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Abstract

We present a class of stochastic optimization problems with constraints
expressed in terms of expectation and with partial knowledge of the out-
come in advance to the decision. The constraints imply that the problem
cannot be reduced to a deterministic one. Since the knowledge of the
outcome is relevant to the decision, it is necessary to seek the solution in
a space of random variables. We prove that under convexity conditions,
a duality method can be used to solve the problem. An application to
statistical data editing is also presented. The search of a good selective
editing strategy is stated as an optimization problem in which the objec-
tive is to minimize the expected workload with the constraint that the
expected error of the aggregates computed with the edited data is below
a certain constant. We present the results of real data experimentation
and the comparison with a well known method.

Keywords: Stochastic Programming; Optimization in Banach Spaces;
Selective Editing; Score Function

AMS Subject Classification: 90C15; 90C46; 90C90

1 Introduction

Let us consider the following elements: a decision variable x under our control;
the outcome ω of a probability space; a function f that depends on x and ω that
we want maximize; and a function g also depending on x and ω that we want
in some sense not to exceed zero. With these materials, various optimization
problems can be posed. In first place, the problem is quite different depending
on whether we know ω in advance to the decision on x or not. In the first case

∗Corresponding author. Email: iarbues@ine.es. Address: Instituto Nacional de Es-
tad́ıstica, Castellana 183, 28071, Madrid, Spain.
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(wait and see), when we make the decision ω is fixed and we have deterministic
functions f(ω, ·) and g(ω, ·). Therefore, we can solve a nonstochastic optimiza-
tion problem for each outcome ω, so that the solution will depend on ω and
consequently to have a stochastic nature, so it would be convenient to study its
properties as a random variable (for example, [2]). In the case ω is unknown
(here and now), the usual approach is to pose a stochastic optimization problem
by setting as the new objective function E[f(x, ω)] (see [4] for a discussion on
this matter). With respect to the function g, the most usual approach is to set
the constraint P [g(x, ω) > 0] ≤ p for a certain p.

The class of problems we study in this paper is an intermediate one with
respect to the knowledge of ω, because we do not know it precisely, but we have
some partial information about it, in a sense that will be specified in detail in
the subsequent section. The use of this partial information to choose x implies
that it will be a random variable itself. On the other hand, in our problems,
the constraints are expressed in terms of expectation, that is, E[g(x, ω)] ≤ 0.

We also analyse an application of these problems to statistical data editing.
Efficient editing methods are critical for the statistical offices. In the past, it
was customary to edit manually every questionnaire collected in a survey be-
fore computing aggregates. Nowadays, exhaustive manual editing is considered
inefficient, since most of the editing work has no consequences at the aggregate
level and can in fact even damage the quality of the data (see [1] and [5]).

Selective editing methods are strategies to select a subset of the question-
naires collected in a survey to be subject to extensive editing. A reason why this
is convenient is that it is more likely to improve quality by editing some units
than by editing some others, either because the first ones are more suspect to
have an error or because the error if it exists has probably more impact in the
aggregated data. Thus, it is reasonable to expect that a good selective editing
strategy can be found that balances two aims: (i) good quality at the aggregate
level and (ii) less manual editing work.

This task is often done by defining a score function (SF), which is used to
prioritise some units. When several variables are collected for the same unit,
different local score functions may be computed and then, combined into a
global score function. Finally, those units with score over a certain threshold
are manually edited.

Thus, when designing a selective editing process it is necessary to decide,

• Whether to use SF or not.

• The local score functions.

• How to combine them into a global score function (sum, maximum, . . . ).

• The threshold.

At this time, the points above are being dealt with in an empirical way be-
cause of to the lack of any theoretical support. In [7], [8] and [5] some guidelines
are proposed to build score functions, but they rely in the criterion of the prac-
titioner. In this paper, we describe a theoretical framework which, under some
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assumptions, answers the questions above. For this purpose, we will formally
define the concept of selection strategy. This allows to state the problem of se-
lective editing as an optimization problem in which the objective is to minimize
the expected workload with the constraint that the expected remaining error
after editing the selected units is below a certain bound.

We present in section 2 the general problem. We also describe how to use
a duality method to solve the problem. In section 3, we show the results of
a simulation experiment. In sections 4 through 7 we describe how to apply
the method to selective editing. In section 8, results of the application of the
method to real data are presented. Finally, some conclusions are discussed.

2 The general problem

Let (Ω,F , P ) be a probability space. For N,m, p ∈ N, let us consider the
functions f defined from RN × Ω in R, g1 = (g1

1 , . . . , g
m
1 ) defined from RN in

Rm and g2 = (g1
2 , . . . , g

p
2) from RN × Ω in Rp. Let us also consider x a N × 1

random vector. If θ is a function defined in RN × Ω, we will use the notation
θ(x) for the mapping ω ∈ Ω 7→ θ(x(ω), ω).

We consider the following problem,

[P ] max E[f(x)] (1)
s.t. x ∈M(G), g1(x) ≤ 0 a.s.,E[g2(x)] ≤ 0. (2)

where M(G) is the set of the G−measurable random variables, for a certain
σ−field G ⊂ F . The condition x ∈ M(G) is the formal expression of the idea
of partial information. The necessity of seeking x among the G−measurable
random variables is the consequence of assuming that all we know about ω is
whether ω ∈ A, for any A ∈ G, that is, if the event A happened.

In order to introduce the main features of the problem, we will analyse first
the case that G = F (full information) and then, we will describe how to reduce
the general case (partial information) to the former one. In the next subsection,
we will present conditions under which a duality method can be applied to solve
problem [P ] with G = F .

2.1 Duality in the case of full information

Let us make some assumptions,

Assumption 1. f and g2 are measurable in ω.

Assumption 2. −f , g1 and g2 are convex in x and the function x ∈ L∞(Ω) 7→
E[θ(x)] is lower semicontinuous for θ = −f, g2.

Assumption 3. There is a random vector x0 such that g1(x0) ≤ 0 a.s. and
E[g2(x0)] < 0.

Assumption 4. The set {z ∈ RN : g1(z) ≤ 0} is bounded.
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Assumption 5. G is countably generated.

We will see that with assumptions 1–5, problem [P] is well posed. Assump-
tions 1, 2 are not too restrictive and then, f, g1 and g2 are allowed to range
over a quite general class. Assumption 2 imply that f and g2 are continuous
in x and thus, they are Carathéodory functions. We can prove that if x is
G−measurable, then ω 7→ θ(x(ω), ω) is also G−measurable and E[θ(x)] makes
sense. The assumptions on g1 imply that the constraint g1(x) ≤ 0 a.s. is well
defined. Assumption 3 is a classical regularity condition necessary for the du-
ality methods and it is usually known as Slater’s condition. Assumption 4 is
restrictive and it is likely not necessary, but makes the proofs easier and it holds
in our applications. Finally, 5 is a technical assumption that does not seem to
imply an important loss of generality for most of practical applications.

We will solve [P ] by duality. Let us define the Lagrange function,

L(x, λ) = E[f(x)]− λT E[g2(x)]. (3)

We can now define the problem,

[P (λ)] maxx L(λ, x)
s.t. g1(x) ≤ 0 a.s.

The dual function is defined as ϕ(λ) = sup{L(λ, x) : g1(x) ≤ 0 a.s.}. If the
supremum is a maximum, we denote by xλ the point where it is attained. The
dual problem is,

[D] minλ ϕ(λ)
s.t. λ ≥ 0.

This problem is of great interest for us because of the following proposition.

Proposition 1. If assumptions 1–5 hold then,

i) There exist solutions to [P ] and [D].

ii) If x is a solution to [P ] and λ̄ is a solution to [D] then, x is a solution to
[P (λ̄)].

Proof. Let us see that the primal problem has a solution. From assumption
4, it follows that we can seek a solution in E = L∞(Ω), which is a Banach
space (Theorem 3.11 in [13]). Under assumption 5, the closed unit ball B in
E is weakly compact (see [3], p.246). From assumption 2 the set M = {x ∈
E : g1(x) ≤ 0 a.s.,E[g2(x)] ≤ 0} is closed and convex and then, weakly closed.
From assumption 4, it is also bounded. Then, there exists some ε > 0 such that
εM ⊂ B. Since εM is a weakly closed subset of a weakly compact set, it is
weakly compact itself. M is also weakly compact because is homothetic to εM .
On the other hand, x 7→ −E[f(x)] is convex and lower semicontinuous. Thus, it
is weakly lower semicontinuous and it attains a minimum in M . The existence
of the solution to [D] and ii) are granted by theorem 1, p. 224 in [9].
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We will see how to compute xλ and ϕ(λ). The dual problem [D] can be solved
by numerical methods since it is a finite–dimensional optimization problem.

The advantage of P [λ] is that the stochastic term is now in the objective
function. Consequently, the solution can be easily obtained by solving a deter-
ministic optimization problem for any outcome ω ∈ Ω,

[PD(λ, ω)] maxx L(λ, x, ω)
s.t. g1(x) ≤ 0

where L(λ, x, ω) = f(x, ω) − λT g2(x, ω). This problem is related to [P (λ)] by
virtue of the following proposition.

Proposition 2. There exists a solution xλ to [P (λ)] such that for any ω ∈ Ω,

i) xλ(ω) is a solution to PD(λ, ω).

ii) ϕ(λ) = E[L(λ, xλ(ω), ω)].

Proof. From assumptions, f and g2 are Carathéodory functions and then, so
is L. Therefore, L is random lower semicontinuous. This means that ω →
epiL(λ, ·, ω) is closed valued and G-measurable (see [11]). Theorem 14.37 in
[12] states that for a random lower semicontinuous function G(x, ω), the mul-
tivalued map Φ(ω) = arg min{G(x, ω) : x ∈ RN} is measurable. Since C =
{x ∈ RN : g1(x) ≤ 0} is convex and closed, it is easy to prove that Ψ(ω) =
arg min{L(λ, x, ω) : x ∈ C} is also measurable. Theorem 14.5 and corollary
14.6, again from [12], imply that there exists a measurable selection from Ψ,
that is, a measurable function xλ(ω) such that for any ω, xλ(ω) ∈ Ψ(ω).

Let y be a measurable function defined on Ω. Since for any ω, xλ(ω) is a
solution to [P (λ, ω)] then, L(λ, y(ω), ω) ≤ L(λ, xλ(ω), ω). Taking expectation
in both sides of the inequality, we get L(λ, y) ≤ L(λ, xλ). Finally, since xλ is a
solution to [P (λ)], ϕ(λ) = L(λ, xλ) = E[L(λ, xλ)].

The optimal λ̄ will be obtained maximizing ϕ. Since ϕ is described in terms
of expectation, it is necessary either to know the real distribution of the terms
in L and compute explicitly its expectation or to estimate it. In practical
applications, the explicit computation will usually not be feasible.

2.2 Partial information

Let us consider now the general case G ⊂ F . We will reduce the problem [P ]
to,

[P ∗] maxx∈M(G) E[f∗(x)] (4)
s.t. g1(x) ≤ 0 a.s.,E[g∗2(x)] ≤ 0. (5)

where for any z ∈ RN , and ω ∈ Ω we define f∗(z, ω) = E[f(z, ·)|G] and
g∗2(z, ω) = E[g2(z, ·)|G]. Both f∗ and g∗ are G−measurable as functions of
ω, so we can apply the results of the previous subsection with G instead of F .
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Of course, we have to prove first that the problem defined above is equivalent to
[P ]. In order to do this, we need the following generalization of the monotone
convergence theorem.

Lemma 1. Let {ξn}n be a sequence of random variables and G a σ−field. If
ξn(ω) ↗ ξ(ω), then, E[ξn|G] ↗ E[ξ|G].

Proof. The sequence of random variables ηn := E[ξn|G] is nondecreasing. Con-
sequently, ηn(ω) ↗ η(ω). We have only to check that η = E[ξ|G]. The random
variable η is G−measurable since it is limit of G−measurable r.v.’s. On the other
hand, for any A ∈ G it holds that,∫

A

ηP (dω) = lim
n

∫
A

E[ξn|G]P (dω) = lim
n

∫
A

ξnP (dω) =
∫

A

ξP (dω)

where the first and third identities hold by the monotone convergence theorem
and the second by the definition of the conditional expectation (page 445 in
[3]).

With this lemma, we can prove the following proposition.

Proposition 3. If −f , and g2 are lower semicontinuous in x, then problem
[P ∗] is equivalent to [P ].

Proof. We only have to prove that E[θ∗(x)] = E[θ(x)], for θ = −f, g2. Let us
consider for k = −n2n, . . . , n2n − 1, the intervals Ink = [k2−n, (k + 1)2−n) for
k = −n2n − 1, we set Ink = (−∞,−n) and for k = n2n, Ink = [n,+∞). Then,
we can define the functions θn,k(ω) = infz∈Ink

θ(z, ω) and,

Ψnk(z) =
{

1 if z ∈ Ink

0 if z /∈ Ink

We can write,

θn(z, ω) =
n2n∑

k=−n2n−1

θn,k(ω)Ψnk(z).

Let us see that θn(z, ω) ↗ θ(z, ω). For any z and n, there exist k, l such
that z ∈ In+1,k ⊂ In,l. Then, θn(z, ω) ≤ θn+1(z, ω) ≤ θ(z, ω). Now, for any
ε > 0, there exists n0 such that for any n ≥ n0, |z− z′| ≤ 2−n implies θ(z′, ω) ≥
θ(z, ω) − ε. Consequently, for any n ≥ n0, θ(z, ω) ≥ θn(z, ω) ≥ θ(z, ω) − ε.
Therefore, θn(z, ω) ↗ θ(z, ω).

Now, by lemma 1

θ∗(z, ω) = E[θ(z, ·)|G] = lim
n

n2n∑
k=−n2n−1

Ψnk(z)E[θn,k|G].

If x(ω) is G−measurable, then

θ∗(x(ω), ω) = lim
n

n2n∑
k=−n2n−1

Ψnk(x(ω))E[θn,k|G] = E[θ(x)|G]
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where we have used again the notation θ(x) for the random variable ω 7→
θ(x(ω), ω). Consequently, E[θ∗(x)] = E[θ(x)].

It is easy to see that [P ∗] satisfies assumptions 1 – 5. Since the functions
involved in problem [P ∗] are measurable with respect to G, it can be considered
as a full information one and thus, solved by using the results of the previous
subsection.

3 Simulation.

Proposition 1, provides the optimal solution to [P ], but the dual problem has
to be solved by numerical methods in order to obtain the Lagrange multipliers.
Thus, we have designed an example of problem [P ] such that λ can be com-
puted analytically. On the other hand, we have obtained estimate values from
simulation in order to compare with the true ones.

Let us consider the following case,

f(x) = 1Tx; g1(x) = (xT − 1T ,−xT )T ; g2(x, ω) =
N∑

i=1

δi(ω)xi − d,

where {δi}i=1,...,N are uniformly distributed in [0, 1] and independent. It is easy
to see that the solution to [P (λ)] is,

xi =
{

1 if λδi < 1
0 if λδi > 1 . (6)

Then, we can see that E[xi] = λ−1 and E[xiδi] = (2λ2)−1. Hence,

ϕ(λ) =
{
N(1− λ

2 ) + λd if λ < 1
N
2λ + λd if λ ≥ 1

,

and consequently, for d < N/2 the minimum is attained at λ̄ = ( N
2d )1/2.

We will estimate λ̄ by applying the sample–path optimization or sample
average approximation method (see [10], [14]). We simulate a sample of size M
of δ = (δ1, . . . , δM ) and then we minimize the function ϕ̂(λ) = M−1

∑M
j=1 ϕj(λ),

where ϕj(λ) = L(λ, xj), L(λ, x) = 1Tx− λ(
∑
δixi − d), xj = (xj

1, . . . , x
j
N ) and

xj
i is defined as in (6) for the j-th simulated value of δ. The minimization of
ϕ̂ has been performed using the function fmincon of the mathematical pack
MATLAB.

The results for a range of values of N and M are presented in table 1,
suggesting that when N is large, even moderate values of M allow to achieve
considerable accuracy. We have chosen d = N/4 and thus, the theoretical λ̄ is√

2.
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N M=1 M=5 M=10 M=25 M=50 M=100 M=250
10 0.2052 0.0966 0.0686 0.0413 0.0330 0.0236 0.0132
50 0.0919 0.0375 0.0313 0.0190 0.0134 0.0104 0.0057

100 0.0694 0.0278 0.0224 0.0117 0.0097 0.0062 0.0044
500 0.0286 0.0125 0.0097 0.0060 0.0044 0.0030 0.0018

1,000 0.0177 0.0090 0.0063 0.0047 0.0030 0.0018 0.0014
5,000 0.0089 0.0041 0.0032 0.0019 0.0014 0.0010 0.0006

10,000 0.0070 0.0028 0.0024 0.0012 0.0011 0.0007 0.0004

Table 1: RMS error in the estimation of λ̄.

4 The selective editing problem

Let us introduce some notation,

• xij
t is the true value of variable j in questionnaire i at period t, with
i = 1, . . . , N and j = 1, . . . , q.

• x̃ij
t = xij

t + εij
t is the observed value of variable j in questionnaire i at

period t, εij
t being the observation error.

• Xk
t =

∑
ωk

ijx
ij
t is the k-th statistic computed with the true values (X̃k

t is
computed with the observed ones), with k ranging from 1 to p.

The linearity assumption implies a loss of generality, which is nevertheless
not very important in the usual practice of statistical offices. Many statistics
are in fact linear aggregates of the data, while in some other cases such as
indices, they are ratios whose denominator depends on past values that can
be considered as constant when editing current values. When the statistic is
nonlinear, the applicability of the method will rely on the accuracy of a first-
order Taylor expansion in {xij

t }.
Let (Ω,F , P ) be a probability space. We assume that xij

t and εij
t are random

variables with respect to that space. There can be other random variables
relevant to the selection process. Among them, some are known at the moment
of the selection, such as x̃ij

t , xij
s with s < t or even variables from other surveys.

The assumption that xij
s is known is equivalent to assume that when editing

period t, the data from previous periods have been edited enough and does not
contain errors. Deterministic variables such as working days may also be useful
to detect anomalous data. We will denote by Gt the σ−field generated by all
the information available up to time t. In order to avoid heavy notation, we
omit the subscript t when no ambiguity arises.

Our aim is to find an adequate selection strategy. A selective editing strategy
should indicate for any i whether questionnaire i will be edited or not and this
has to be decided using the information available. In fact, we will allow the
strategy not to determine precisely whether the unit is edited but only with a
certain probability.
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Definition 1. A selection strategy (SS) with respect to Gt is a Gt-measurable
random vector r = (r1, . . . , rN )T such that ri ∈ [0, 1].

We denote by S(Gt) the set of all the SS with respect to Gt. The interpre-
tation of r is that questionnaire i is edited with probability 1 − ri. To allow
0 ≤ ri ≤ 1 instead of the more restrictive ri ∈ {0, 1} is theoretically and prac-
tically convenient because then, the set of strategies is convex and techniques
from convex optimization can be used. Moreover, it could happen that the op-
timal value over this generalized space were better than the restricted case (just
as in hypothesis testing a randomized test can have a greater power than any
nonrandomized one). If for a certain unit, ri ∈ (0, 1), then the unit is effectively
edited depending on whether χi

t < ri, where χi
t is a random variable distributed

uniformly in the interval [0, 1], and independent from every other variable in our
framework (in order to accommodate these further random variables, we con-
sider an augmented probability space, (Ω∗,F∗, P ∗), which is the product space
of the original one times the suitable choice of (Ω1,F1, P1); only occasionally
we have to refer to the augmented one). We denote by r̃i the indicator variable
of the event χi

t < ri and r̃ = (r̃1, . . . , r̃N ). If a SS satisfies ri ∈ {0, 1} a.s., then
r̃ = r a.s. and we say that r is integer. The set of integer SS is denoted by
SI(Gt). In our case study, the solutions obtained are integer or approximately
integer.

It is also convenient to have a formal definition of a Score Function.

Definition 2. Let r be a SS, δ = (δ1, . . . , δN )T a random vector and Θ ∈ R,
such that ri = 1 if and only if δi ≤ Θ. Then, we say that δ is a Score Function
generating r with threshold Θ.

In order to formally pose the problem, we will assume that after manual
editing, the true values of a questionnaire are obtained. Thus, we have to
consider only the observed and true values. We define the edited statistic Xk(r)
as the one calculated with the values obtained after editing according to a certain
choice. We can write Xk(r) =

∑
ωk

ij(x
ij
t + r̃iε

ij
t ).

The quality of Xk(r) has to be measured according to a certain function.
In this paper, we consider only the Squared Error, (Xk(r)−Xk)2. This choice
makes easier the theoretical analysis. It remains for future research to adapt the
method for other loss functions. The value of the loss function can be written
as,

(Xk(r)−Xk)2 =
∑
i,i′

εki ε
k
i′ r̃ir̃i′ , (7)

where εki =
∑

j ω
k
ijε

ij
t or, in matrix form, as (Xk(r) − Xk)2 = r̃′Ekr̃, with

Ek = {Ek
i,i′}i,i′ and Ek

i,i′ = εki ε
k
i′ . We can now state the problem of selection as

an optimization problem,

[PQ] maxr E[1T r̃]
s.t. r ∈ S(Gt),E[r̃TEkr̃] ≤ e2k, k = 1, . . . , p.
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In section 6 we will see the solution to this problem. The vector in the
cost function can be substituted for another one in case the editing work were
considered different among units (e.g., if we want to reduce the burden for some
respondents; this possibility is not dealt with in this paper).

Let us now analyse the expression (7). We can decompose it as,

(Xk(r)−Xk)2 =
∑

i

(εki )2r̃i +
∑
i 6=i′

εki ε
k
i′ r̃ir̃i′ . (8)

The first term in the RHS of (8) accounts for the individual impact of each
error independently of its sign. In the second term the products are negative
when the factors have different signs. Therefore, in order to reduce the total
error, a strategy will be better if it tends to leave unedited those couples of units
with different signs. The nonlinearity of the second term makes the calculations
more involved. For that reason, we will also study the problem neglecting the
second term.

[PL] maxr E[1T r̃]
s.t. r ∈ S(Gt),E[Dkr̃] ≤ e2k, k = 1, . . . , p,

where Dk = (Dk
1 , . . . , D

k
N )T , Dk

i = (εki )2

This problem is easier than PQ because the constraints are linear. In section
5 we will see that the solution is given by a certain score function. Since there
is no theoretical justification for neglecting the quadratic terms, the SS solution
of the linear problem has to be empirically justified by the results obtained with
real data.

5 Linear case

In this section, we analye problem [PL]. The reduction to the full information
case yields f∗(r, ω) = 1T r and g∗2(r, ω) = ∆kr, where ∆k = E[Dk|Gt]. From
now onwards, we write f and g2 instead of f∗ and g∗2 . Therefore, [PL] can be
stated as a particular case of [P ] with,

x = r G = Gt

g1(r) = (rT − 1T ,−rT )T f(r, ω) = 1T r
g2(r, ω) = (∆1(ω)r − e21, . . . ,∆

p(ω)r − e2p)
T

(9)

In order to avoid heavy notation, the dependence of ∆k on ω will be implicit in
the subsequent analysis. Note that in our application, f does not depend on ω.

Proposition 4. If ∆k has finite expectation for all k and Gt is countably gen-
erated, then assumptions 1–5 hold for the case defined by (9).

Proof. For fixed r, g2 is measurable in ω because it is a linear combination of
measurable functions. Therefore, assumption 1 holds. The convexity of the
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functions is due to the linearity. For the continuity condition of assumption 2
is sufficient that ∆k ∈ L1, because of,

|E[g2(z)]−E[g2(r)]| = |
∫

[gk
2 (z(ω), ω)− gk

2 (r(ω), ω)]P (dω)| ≤

≤
∫
|gk

2 (z(ω), ω)− gk
2 (r(ω), ω)|P (dω) ≤ ‖∆k‖L1‖z − r‖L∞

The conditions on f trivially hold, since it is linear and nonrandom. Assumption
3 holds with x0 = 0 and assumptions 4 and 5 are obvious.

The deterministic problem in this case can be expressed as,

max
r

1T r −
∑

k λk(∆kr − e2k)

s.t. ri ∈ [0, 1].

By applying the Karush–Kuhn–Tucker conditions, we get that the solution
is given by,

ri =
{

1 if λT ∆i < 1
0 if λT ∆i > 1 , (10)

where ∆i = (∆1
i , . . . ,∆

p
i )

T . The case λT ∆i = 1 is a zero-probability event since
we deal with quantitative data and then, the distribution of ∆i is continuous.
This implies,

Proposition 5. The solution to [PL] is the SS generated by the Score Function
δi = λT ∆i with threshold equal to 1.

We describe in section 7 how to use a model for the practical computation
of ∆k. In order to estimate the dual function ϕ(λ) = E[L(λ, xλ)] we replace
expectation for the mean value over a sample as we did in section 3. However, in
this case we can obtain a sample of real data instead of a simulated one because
we have realizations of the variables for several periods. Thus, we can seek the
optimum of ϕ̂(λ) = 1

h

∑t0+h−1
t=t0

Lt(λ, rt(λ)).
Summarizing the foregoing discussion, we have proved that,

• The optimum solution to [PL] is a score-function method whose global
SF is a linear combination of the local SF of the different indicators k =
1, . . . , p.

• The local score function of indicator k is given by ∆k
i = E[(εki )2|Gt].

• The coefficients λk of the linear combination are those which maximize
ϕ(λ).

• The threshold is 1.

11



6 Quadratic case

The outline of this section is similar to that of the previous one, but the
quadratic problem poses some further difficulties, in particular, that the con-
straints are not convex. Therefore, we will replace them by some convex ones
in such a way that under some assumptions the solutions remain the same.

Lemma 2. The following identity holds,

E[r̃TEkr̃|Gt] = rT Γkr + (∆k)T r (11)

where Γk = {Γk
ij}ij and,

Γk
ij =

{
E[εki ε

k
j |Gt] if i 6= j

0 if i = j

Proof. Since (r̃i)2 = r̃i can write,

E[r̃TEkr̃|Gt] =
∑

i

E[(εki )2r̃i|Gt] +
∑
i 6=i′

E[εki ε
k
i′ r̃ir̃i′ |Gt] (12)

If we define G∗t = Gt × σ(χi)× σ(χi′), by using that E[·|Gt] = E[E[·|G∗t ]|Gt],
we can write the right hand side of (12) as,∑

i

E[E[(εki )2r̃i]|G∗t ]|Gt] +
∑
i 6=i′

E[E[εki ε
k
i′ r̃ir̃i′ ]|G∗t ]|Gt] (13)

Since r̃i and r̃i′ are G∗t−measurable, (13) can be expressed as,∑
i

E[r̃iE[(εki )2]|G∗t ]|Gt] +
∑
i 6=i′

E[r̃ir̃i′E[εki ε
k
i′ ]|G∗t ]|Gt]

but χi and χi′ are independent from F , so E[εki ε
k
i′ |G∗t ] = E[εki ε

k
i′ |Gt] = Γk

ii′ and
E[(εki )2|G∗t ] = E[(εki )2|Gt] = ∆k

i . Now, Γk
ii′ and ∆k

i are Gt−measurable. Finally,
using that E[r̃i|G] = ri and E[r̃ir̃i′ |G] = riri′ we get (11).

Therefore, [PQ] is a particular case of [P ] with,

x = r G = Gt

g1(r) = (rT − 1T ,−rT )T f(r) = 1T r
g2(r, ω) = (rT Γ1r + (∆1)T r − e21, . . . , r

T Γpr + (∆p)T r − e2p)
T

.

(14)
Where the dependence of the conditional moments on ω is again implicit. Unfor-
tunately, the matrices Γk are indefinite and thus the constraints are not convex.
We will overcome this difficulty by using the following lemma.

Lemma 3. Let ḡ2 be a function such that ∀r ∈ SI(G), ḡ2(r) = g2(r) and ∀r ∈
S(G), ḡ2(r) ≤ g2(r), and let [P ′

Q] be the problem obtained from [PQ] substituting
g2 for ḡ2. Then, if r is a solution to [P ′

Q] and r ∈ SI(G), then r is a solution to
[PQ].

12



Proof. Let us assume that r is a solution to [P ′
Q] and it is integer. We know

that r satisfies E[ḡ2(r)] ≤ e2k for k = 1, . . . , p. Then, E[g2(r)] ≤ e2k, so r is
satisfies the constraints of [PQ]. Let s ∈ S(Gt) such that E[g2(r)] ≤ e2k. Since
E[ḡ2(r)] ≤ E[g2(r)] then E[ḡ2(r)] ≤ e2k and then, E[1T s] ≤ E[1T r].

We may consider for example the two following possibilities,

(i) ḡ2(r) = rT Σkr, where Σk
ij = E[εki ε

k
j |Gt]

(ii) ḡ2(r) = rTMkr + (vk)T r, where Mk
ij = mk

im
k
j , mk

i = E[εki |Gt], vk
i =

V[εki |Gt].

The case (ii), can be used only under the assumption that E[εki ε
k
j |Gt] =

mk
im

k
j for i 6= j and this will be the one used in our application (section 8).

Lemma 3 has practical relevance if we check that the solutions of [P ′
Q] are

integer. We will show that this approximately holds in our application.
Problem [P ′

Q] is a case of [P ] with,

x = r f(r) = 1T r
g1(r) = (rT − 1T ,−rT )T

g2(r, ω) = (rTA1r + (b1)T r − e21, . . . , r
TApr + (bp)T r − e2p)

T

(15)
Where Ak = Σk, bk = 0 or Ak = Mk, bk = vk. Since Ak are positive

semidefinite, we can state,

Proposition 6. If Ak and bk have finite expectation for all k and Gt is countably
generated, then assumptions 1–5 hold for the case defined by (15).

Proof. The arguments of proposition 4 can be easily adapted to the quadratic
case given that the matrices that appear in the definition of g2 are positive
semidefinite. For the continuity condition of assumption 2 note that,

|gk
2 (z(ω), ω)− gk

2 (r(ω), ω)| = |zTAkz + (bk)T z − rTAkr − (bk)T r| ≤
≤ |zTAk(z − r)|+ |rTAk(z − r)|+ |(bk)T (z − r)|

Then,

|E[g2(z)]−E[g2(r)]| ≤
{[
‖z‖L∞ + ‖r‖L∞

]
‖Ak‖L1 + ‖bk‖L1

}
‖z − r‖L∞

If z → r in L∞, the right hand side of the inequality above converges to zero.
As in proposition 4, the conditions on f trivially hold.

As in the linear case, r(λ) is obtained solving a deterministic optimization
problem, in this case a quadratic programming problem.

max
r

1T r −
∑

k λk(ḡk
2 (r)− e2k) (16)

s.t. ri ∈ [0, 1]. (17)

13



An important difference with respect to the linear case is that the problem
above does not explicitly provide a Score Function generating the SS as when
applying the Karush–Kuhn–Tucker conditions in section 5.

We describe in section 7 a practical method to obtain Mk, Σk and vk. It
is easy to solve [PD(λ, ω)] in the linear case, but for large sizes (in our case
N > 10, 000), the quadratic programming problem becomes computationally
heavy if solved by traditional methods. For ḡ2 defined as in (ii), we can take
advantage of the low rank of the matrix in the objective function to propose
(appendix A) an approximate method to solve it efficiently. In our real data
study, we have checked the performance of this method and the results are
presented in subsection 8.1.

7 Model-based conditional moments

The practical application of the results in previous sections requires a method
to compute the conditional moments of the error with respect to Gt. In this
section, we drop the index j to reduce the complexity of the notation, but the
results can be adapted to the case of several variables per questionnaire.

Let Ht be a σ−field generated by all the information available at time t
with the exception of x̃i

t. Then, Gt = σ(x̃i
t,Ht). Let x̂i

t = π̃(xi
t) be a predictor

computed using the information in Ht, that is a Ht-measurable random variable
optimal in some way decided by the analyst. The prediction error is denoted
by ξi

t = xi
t − x̂i

t

We assume that,

Assumption 6. ξi
t and ηi

t are distributed as a bivariate Gaussian with zero
mean, variances ν2

i and σ2
i and correlation γi.

Assumption 7. εi
t = ηi

te
i
t, where ei

t is a Bernoulli variable that equals 1 or 0
with probabilities p and 1− p and it is independent of ξi

t and ηi
t.

Assumption 8. ξi
t, η

i
t and ei

t are jointly independent of Ht.

With these assumptions, the conditional moments of the error with respect
to Gt are functions of the sole variable ui

t = x̂i
t − x̃i

t, that is, the difference
between the predicted and the observed values. In the next proposition we will
also drop i and t in order to simplify notation.

Proposition 7. Under the assumptions 6–8, it holds,

E[ε|G] =
σ2 + γσν

σ2 + ν2 + 2γσν
uζ (18)

E[ε2|G] =

[
σ2ν2(1− γ2)
σ2 + ν2 + 2γσν

+
(

σ2 + γσν

σ2 + ν2 + 2γσν

)2

u2

]
ζ, (19)

where,

ζ =
1

1 + 1−p
p

(
ν2

σ2+ν2+2γσν

)−1/2

exp{− u2(σ2+2γσν)
2ν2(σ2+ν2+2γσν)}

. (20)
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Proof. First of all, E[εα|u] = E[eηα|u] = E[E[eηα|e, u]|u]. Since e is σ(e, u)−
measurable, E[eηα|e, u] = E[ηα|e, u]e. We can prove that,

E[ηα|e, u] =
{
ψ(u) e = 1
σ2 e = 0 ,

where ψ is such that E[ηα|ξ + η] = ψ(ξ + η). Therefore, E[ηα|e, u]e = ψ(u)e,
and then, E[E[eηα|e, u]|u] = ψ(u)E[e|u].

It remains to compute E[e|u] and ψ(u) for α = 1, 2. For this purpose, we
can use the properties of the Gaussian distribution. If (x, y) is a Gaussian-
distributed random vector with zero mean and covariance matrix (σij)i,j∈{x,y}.
Then, the conditional distribution f(y|x) is a Gaussian with mean and variance,

E[y|x] =
σxy

σxx
x V [y|x] = σyy −

σxy
2

σxx
.

Then,

E[y2|x] = σyy +
σxy

2

σxx

(
x2

σxx
− 1

)
Now, we can apply the relations above to y = η and x = u = η + ξ. Then,
σxx = σ2 + ν2 + 2γσν and σyy = σ2, σxy = σ2 + γσν. Thus, for α = 1,

ψ(u) =
σ2 + γσν

σ2 + ν2 + 2γσν
u,

and for α = 2,

ψ(u) = σ2 +
(σ2 + γσν)2

σ2 + ν2 + 2γσν

(
u2

σ2 + ν2 + 2γσν
− 1

)
.

Let us now compute ζ = E[e|u] = P [e = 1|u]. By an argument similar to
Bayes’s theorem it can be proved that ζ is equal to P [e = 1]f(u|e = 1)/f(u),
where f(u|e = 1) is a zero-mean Gaussian density function with variance σ2 +
ν2 +2γσν and f(u) is a mixture of two Gaussians with variances s21 = σ2 +ν2 +
2γσν and s22 = ν2 and probabilities p and 1− p respectively. Hence,

ζ = p
(2πs21)

−1/2 exp{− u2

2s2
1
}

p(2πs21)−1/2 exp{− u2

2s2
1
}+ (1− p)(2πs22)−1/2 exp{− u2

2s2
}
.

After simplifying it yields,

ζ =
1

1 + 1−p
p

(
ν2

σ2+ν2+2γσν

)−1/2

exp{− u2(σ2+2γσν)
2ν2(σ2+ν2+2γσν)}

.

Finally, since ξ, η and e are independent of Ht, we can conclude by noting
that E[ε2|u] = E[ε2|u,Ht] = E[ε2|Gt].
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8 Case Study

In this section, we present the results of the application of the methods described
in this paper to the data of the Turnover/New Orders Survey. Monthly data
from about N = 13, 500 units are collected. In the moment of the study, data
from January 2002 to September 2006 were available (t ranges from 1 to 57).
Only two of the variables requested in the questionnaires are considered in
our study, namely, Total Turnover and Total New Orders (q = 2). The total
Turnover of unit j at period t is xi1

t and Total New Orders is xi2
t . These two

variables are aggregated separately to obtain the two indicators, so p = 2 and
ω1

i2 = ω2
i1 = 0.

We need a model for the data in order to apply proposition 7 and obtain the
conditional moments. Since the variables are distributed in a strongly asym-
metric way, we use their logarithm transform, yij

t = log(xij
t + m), where m is

a positive constant adjusted by maximum likelihood (m ≈ 105e). The condi-
tional moments of the original variable can be recovered exactly by using the
properties of the log-normal distribution or approximately by using a first-order
Taylor expansion, yielding E[(x̃ij

t − xij
t )2|Gt] ≈ (x̃ij

t −m)2E[(ỹij
t − yij

t )2|Gt]. In
our study, we used the approximate version. We found that if x̃ij

t −m is replaced
by an average of the last 12 values of x̃ij

t , the estimate becomes more robust
against very small values of x̃ij

t −m.
The model applied to the transformed variables is very simple. We assume

that the variables xij
t are independent across (i, j) and for any pair (i, j), we

choose among the following simple models.

(1−B)yij
t = at (21)

(1−B12)yij
t = at (22)

(1−B12)(1−B)yij
t = at (23)

where B is the backshift operator But = ut−1 and at are white noise processes.
We obtain the residuals ât and then select the model which produces lesser mean
of squared residuals,

∑
â2

t/(T − r), where r is the maximum lag in the model.
With this model, we compute the prediction ŷij

t and the prediction standard
deviation νij . The a priori standard deviation of the observation errors and the
error probability are considered constant across units (that is possible because
of the logarithm transformation). We denote them by σj and pj with j = 1, 2
and they are estimated using historical data of the survey.

A database is maintained with the original collected data and subsequent
versions after eventual corrections due to the editing work. Thus, we consider
the first version of the data as observed and the last one as true. The coefficient
γi is assumed zero. Once we have computed σj , pj , νij and uij

t , proposition 7
can be used to obtain the conditional moments and then, ∆k, Σk and vk.

16



λ mean 1T r mean 1T |r − rapp| λ mean 1T r mean 1T |r − rapp|
102 592.8 0.16 109 235.8 0.25
104 587.6 1.12 1010 108.7 0.08
106 555.3 1.13 1011 44.0 0.07
108 386.3 0.51 1012 23.8 0.08

Table 2: Comparison between the exact (r) and approximate (rapp) quadratic
methods.

8.1 Accuracy of the Approximate Method to the Quadratic
Problem.

Before assessing the efficiency of the selection, we have used the data to check
that the approximate method to solve the quadratic problem does not produce
a significant disturbance of the solutions. We have compared the approximate
solutions to the ones obtained by a usual quadratic programming approach.
For this purpose, we have used the function quadprog of the mathematical pack
MATLAB. For the whole sample, quadprog does not converge in a reasonable
time —that is the reason why the approximate method is required— so we have
extracted for comparison a random subsample of 5% (roughly over 600 units)
and we have solved the problem [PQ] for a range of values of λ with the exact and
approximate methods. In table 2, we present for the different values of λ, the
average of the number of units edited using the exact method and a measure of
the difference between the two methods. We also have used this data to check
the validity of the assumption that the solutions (of the exact method) are
integer. For this purpose, we computed

∑
i min{ri, 1 − ri}, whose value never

exceeded 1, while the number of units for which min{ri, 1− ri} > 10−3 was at
most 2. Therefore, the solution can be considered as approximately integer.

8.2 Expectation Constraints

We will now check that the expectation constraints in [PL] and [PQ] are effec-
tively satisfied. In order to do this, for l = 1, . . . , b with b = 20 we solve the opti-
mization problem with the variance bounds e21l = e22l = e2l = [s((l−1)/(b−1))

0 s
((b−l)/(b−1))
1 ]2.

The range of standard deviations goes from s0 = 0.025 to s1 = 1.
The expectation of the dual function is estimated using a h−length batch

of real data. For any period from October 2005 to September 2006 and for any
l = 1, . . . , b, a selection r(t, l) is obtained according the bound e2k. The average
across t of the remaining squared errors is thus computed as,

ê2kl =
1
12

t0+11∑
t=t0

r(t, l)TEkr(t, l)

We repeated these calculations for h = 1, 3, 6 and 12 both using the linear
and the quadratic versions. The results are arranged in tables 4 to 11. For
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Turnover Orders
E1 E2 E1 E2

δ0 0.43 0.44 1.16 1.33
δ1 0.30 0.38 0.36 0.45
δ2 0.21 0.26 0.28 0.37

Table 3: Comparison of score functions.

each l we present the average number of units edited, the desired bound and for
k = 1, 2, the quotient êkl/ekl. In every case, there is a tendency to underestimate
the error when the constraints are smaller and to overestimate it when the
bounds are larger. The quadratic method produces better results with respect
to the bounds but at the price of editing more units.

8.3 Comparison of Score Functions

We intend to compare the performance of our method to that of the score-
function described in [6], δ0i = ωi|x̃i− x̂i|, where x̂i is a prediction of x according
to a certain criterion. The author proposes to use the last value of the same
variable in previous periods. We have also considered the score function δ1

defined as δ0 but using the forecasts obtained through the models in (21)–(23).
Finally, δ2 is the score function computed using (21)–(23) and proposition 7.
The global SF is just the sum of the two local ones. We will measure the
effectiveness of the score functions by Ej

l =
∑

nE
j
l (n), with,

Ej
1(n) =

N∑
i≥n

(ωj
i )

2(x̃ij − xij)2 Ej
2(n) =

[ N∑
i≥n

ωj
i (x̃

ij − xij)
]2

,

where we consider units arranged in descending order according to the corre-
sponding score function. These measures can be interpreted as estimates of the
remaining error after editing the n first units. The difference is that Ej

1(n) is
the aggregate squared error and Ej

2(n) is the squared aggregate error. Thus,
Ej

2(n) is the one that has practical relevance, but we also include the values
of Ej

2(n) because in the linear problem [PL], it is the aggregate squared error
which appears in the left side of the expectation constraints. In principle, it
could happen that our score function was optimal for the Ej

1(n) but not for
Ej

2(n). Nevertheless, the results in table 3 show that δ2 is better measured both
ways.

9 Conclusions.

We have described a theoretical framework to deal with the problem of selective
editing, defining the concept of selection strategy. We describe the search for
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an adequate selection strategy as an optimization problem. This problem is a
linear optimization problem with quadratic constraints. We show that the score
function approach is the solution to the problem with linear constraints. We
also show how to solve the quadratic problem.

The score function obtained outperforms a reference SF. Both the linear
and the quadratic versions of our method produce selection strategies that sat-
isfy approximately the constraints but for small values of the constraint. The
quadratic method seems to be more conservative and then, the bounds are bet-
ter fulfilled, but more units are edited. On the other hand, the implementation
of the linear method is easier and computationally less demanding. This sug-
gests that the quadratic method is more adequate for cases in which the bounds
are critical and the linear one for cases in which timeliness is critical.
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A Approximate method for the quadratic prob-
lem

The Karush–Kuhn–Tucker conditions applied to the problem (16)–(17) with
ḡk
2 (r) = rTMkr + (vk)T r − e2k imply that in the optimum, the following holds,

2
∑

k

λkm
k
i (mk)T r + vk

i − 1 = µ+
i − µ−i µ+

i , µ
−
i ≥ 0

µ+
i (1− ri) = 0 µ−i ri = 0

where mk = (mk
1 , . . . ,m

k
N )T . The relations above hold when,

2
∑

k λkm
k
i (mk)T r + vk

i − 1 > 0 if ri = 1
2

∑
k λkm

k
i (mk)T r + vk

i − 1 < 0 if ri = 0

Let us assume that we know α = [(m1)T r, . . . , (mp)T r]T = Mr, where M =
(m1, . . . ,mp)T . Then, we can built r(α) as,

ri =
{

1 if 2
∑

k λkm
k
i αk + vk

i > 1
0 if 2

∑
k λkm

k
i αk + vk

i < 1

If α = Mr(α), then r(α) is a solution. We can solve approximately the fixed-
point problem by minimizing ‖α −Mr(α)‖2. In our applications p is typically
small, so the dimension of the optimization problem has been strongly reduced.
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Table 4: Error bounds of the linear version (h=1).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 2.04 3.15 397.0 0.1742 0.85 1.59 29.9
0.0304 1.87 2.72 312.2 0.2116 0.75 1.29 21.1
0.0369 1.61 2.28 245.8 0.2569 0.65 1.05 14.1
0.0448 1.46 1.99 194.8 0.3120 0.61 0.86 9.5
0.0544 1.08 1.54 153.6 0.3788 0.56 0.73 6.1
0.0660 0.90 1.38 119.6 0.4600 0.56 0.69 3.8
0.0801 0.79 1.19 92.5 0.5585 0.61 0.60 2.1
0.0973 0.72 1.02 71.9 0.6782 0.47 0.51 1.3
0.1182 0.74 1.22 54.5 0.8235 0.39 0.42 0.8
0.1435 0.88 1.63 40.9 1.0000 0.32 0.34 0.8

Table 5: Error bounds of the linear version (h=3).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 2.43 3.74 427.9 0.1742 1.26 1.29 33.7
0.0304 2.45 3.35 338.4 0.2116 1.18 1.18 24.3
0.0369 2.49 3.09 266.7 0.2569 1.00 1.00 17.5
0.0448 2.36 2.39 208.8 0.3120 0.87 0.81 12.0
0.0544 1.86 2.39 165.2 0.3788 0.88 0.70 8.1
0.0660 1.66 1.99 132.6 0.4600 0.79 0.59 5.4
0.0801 1.60 1.68 102.2 0.5585 0.67 0.51 3.1
0.0973 1.50 1.46 79.0 0.6782 0.56 0.44 1.8
0.1182 1.50 1.38 60.9 0.8235 0.43 0.36 1.1
0.1435 1.41 1.24 46.0 1.0000 0.35 0.31 0.7

Table 6: Error bounds of the linear version (h=6).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 1.89 3.20 414.8 0.1742 0.97 1.31 30.5
0.0304 1.88 2.63 327.8 0.2116 0.82 1.29 20.7
0.0369 2.04 2.43 257.6 0.2569 0.71 1.09 15.0
0.0448 1.83 2.05 202.0 0.3120 0.80 0.85 10.3
0.0544 1.58 1.87 157.7 0.3788 0.74 0.77 6.8
0.0660 1.11 1.59 125.7 0.4600 0.71 0.72 4.7
0.0801 1.10 1.25 95.9 0.5585 0.57 0.57 2.7
0.0973 0.96 1.01 73.2 0.6782 0.47 0.46 1.7
0.1182 0.96 1.18 56.2 0.8235 0.42 0.38 1.2
0.1435 0.96 1.12 41.8 1.0000 0.30 0.31 0.5
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Table 7: Error bounds of the linear version (h=12).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 1.56 3.38 430.4 0.1742 0.76 0.86 31.3
0.0304 1.08 2.63 340.7 0.2116 0.64 1.09 20.0
0.0369 1.02 1.77 268.4 0.2569 0.97 0.91 14.0
0.0448 1.00 1.30 207.9 0.3120 0.79 0.65 7.6
0.0544 0.79 1.26 161.0 0.3788 0.78 0.64 4.4
0.0660 0.72 0.98 129.4 0.4600 0.78 0.65 2.7
0.0801 0.84 0.78 96.4 0.5585 0.64 0.48 1.3
0.0973 1.15 0.60 76.1 0.6782 0.53 0.40 0.9
0.1182 0.96 0.64 57.4 0.8235 0.43 0.33 0.7
0.1435 0.83 0.68 41.1 1.0000 0.36 0.27 0.6

Table 8: Error bounds of the quadratic version (h=1).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 2.41 4.12 507.6 0.1742 0.99 0.82 265.0
0.0304 1.40 3.01 655.8 0.2116 1.95 0.86 134.8
0.0369 1.60 2.57 540.8 0.2569 0.98 0.86 54.3
0.0448 1.32 2.12 541.3 0.3120 1.35 0.73 36.5
0.0544 0.80 1.71 593.5 0.3788 0.68 0.63 29.2
0.0660 1.06 1.67 469.8 0.4600 0.55 0.52 20.8
0.0801 0.81 1.44 460.6 0.5585 0.46 0.73 19.8
0.0973 0.98 1.21 275.7 0.6782 0.64 0.59 5.9
0.1182 1.19 1.05 150.8 0.8235 0.53 0.52 5.4
0.1435 1.21 0.99 272.6 1.0000 0.44 0.41 1.9

Table 9: Error bounds of the quadratic version (h=3).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 1.58 2.41 650.3 0.1742 1.24 0.90 85.4
0.0304 1.44 1.63 563.1 0.2116 1.14 0.86 42.3
0.0369 1.27 1.81 589.9 0.2569 0.94 0.73 38.1
0.0448 0.96 1.30 507.3 0.3120 0.80 0.85 26.3
0.0544 0.98 1.66 388.5 0.3788 0.61 0.70 20.6
0.0660 1.45 1.49 298.8 0.4600 0.53 0.49 23.9
0.0801 1.65 1.61 231.4 0.5585 0.59 0.60 15.1
0.0973 1.35 0.82 171.2 0.6782 0.47 0.46 4.3
0.1182 1.03 0.62 152.4 0.8235 0.31 0.37 3.6
0.1435 1.25 0.91 101.5 1.0000 0.31 0.32 2.7
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Table 10: Error bounds of the quadratic version (h=6).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 1.86 2.50 578.4 0.1742 1.24 0.92 77.8
0.0304 1.46 2.02 605.9 0.2116 0.99 0.76 59.8
0.0369 1.42 1.82 401.9 0.2569 0.92 0.67 35.4
0.0448 0.95 1.35 477.3 0.3120 0.71 0.56 27.7
0.0544 0.96 1.17 390.5 0.3788 0.64 0.66 28.0
0.0660 1.41 1.28 278.8 0.4600 0.71 0.59 13.3
0.0801 1.31 1.30 283.4 0.5585 0.56 0.57 6.8
0.0973 0.99 0.84 225.8 0.6782 0.46 0.47 6.8
0.1182 1.32 1.22 140.3 0.8235 0.39 0.38 2.9
0.1435 1.30 0.95 93.1 1.0000 0.32 0.46 1.6

Table 11: Error bounds of the quadratic version (h=12).
el ê1l/el ê2l/el n el ê2l/el ê2l/el n

0.0250 1.38 1.91 703.4 0.1742 1.19 0.95 83.3
0.0304 1.13 1.77 620.5 0.2116 0.99 0.71 69.3
0.0369 0.93 1.78 595.8 0.2569 0.82 0.57 50.8
0.0448 0.83 1.54 515.7 0.3120 0.73 0.51 46.8
0.0544 0.66 1.38 456.6 0.3788 0.59 0.45 27.8
0.0660 0.84 1.27 422.5 0.4600 0.55 0.51 18.0
0.0801 1.09 1.40 284.6 0.5585 0.58 0.61 10.8
0.0973 1.21 1.05 223.3 0.6782 0.48 0.48 4.5
0.1182 1.51 1.16 120.3 0.8235 0.39 0.40 1.3
0.1435 1.19 0.81 86.1 1.0000 0.32 0.32 1.2
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