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Abstract

We propose a binary quadratically constrained linear program as an approach

to selective editing in the survey production process. In a practice-oriented frame-

work and allowing for some overediting whilst strictly fulfilling estimates accu-

racy restrictions, we propose two greedy algorithms to find feasible suboptimal

solutions. Their running times are quartic and cubic, respectively, in the number

of sampling units to edit and linear in the number of restrictions in both cases.

We present computational evidence from several hundreds of instances randomly

generated.

Keywords: Combinatorial optimization; quadratic constraint; linear program;

greedy algorithm; selective editing.

MSC Classification: 90C27, 90C20, 90C59, 90C90.

1 Introduction

Data editing is a critical stage in the production process of sample survey estimates

(de Waal, 2009; de Waal et al., 2011). Data editing can be defined as the “proce-

dure(s) designed and used for detecting erroneous and/or questionable survey data

[. . . ] with the goal of correcting [. . . ] as much of the erroneous data (not necessarily

all of the questioned data) as possible, usually prior to data imputation and summary

procedures” (FCSM, 1990). Under this umbrella term, data editing gathers a bunch of

different techniques to detect errors in survey data (see e.g. de Waal et al. (2011); UN-

ECE (1994, 1997)). Regarding mathematical programming, the most relevant tech-

nique is automated data editing, which focuses upon the so-called error localization

problem. This problem arises as follows. Survey estimates are constructed from sam-

ple data collected in questionnaires containing the reported values of the surveyed

variables of interest. Subject matter experts formulate consistency checks, known as
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edit rules (or simply as edits), to guarantee the quality of the collected data. Usu-

ally these fail one or several edits and the expert must decide which variable values

contain an error and thus must be treated (generally by producing a synthetic value

with so-called imputation techniques or else by recollecting data). Since the seminal

work by Fellegi and Holt Fellegi and Holt (1976), this problem has been formulated

as a mixed-integer linear minimization program in different ways (Bruni, 2004, 2005;

Bruni et al., 2001; Chen, 1998; Garfinkel et al., 1986, 1988; McKeown, 1984; Ragsdale

and McKeown, 1996; de Waal, 2003; de Waal and Coutinho, 2005; de Waal and Quere,

2003; Winkler, 1997, 1998; Winkler and Chen, 2002), where the goal is to change in

each questionnaire as fewest values as possible and the feasibility region is deter-

mined by the set of formulated edits.

Automatic data editing brings desirable quality elements into the survey produc-

tion process, such as statistical defensibility, rationality of the process, increased ca-

pacities, etc. (see e.g. Pierzchala (1990)). These features should be extended to other

editing techniques. In particular, we have focused upon selective editing, i.e. that edit-

ing modality aimed at detecting influential errors in survey data (see de Waal et al.

(2011) and multiple references therein). Under our conviction that the preceding de-

sirable properties stem out from the use of mathematical programming, efforts have

been dedicated to formulate selective editing as an optimization problem. A first direc-

tion (Arbués et al., 2009, 2010) points at stochastic optimization. A second approach

(Salgado, 2011) resorts to combinatorial optimization. A detailed discussion of both

approaches, their derivation from a generic common optimization problem and their

implications for the survey production process will be undertaken elsewhere. In the

present paper, we undergo the resolution of the combinatorial version by proposing

two greedy algorithms, analyzing their running times, their precision and presenting

computational evidence.

The paper is organized as follows. In section 2 we show very briefly how the

problem arises when demanding an optimal reduction of the survey editing tasks

whilst controlling the accuracy of the estimation and express the motivation for find-

ing a fast, although possibly inexact, algorithm to solve the problem. In section 3 we

present a first greedy algorithm which takes advantage of both the structure of the

problem and the implications for the survey production process. In section 4, using a

similar approach, we propose a faster, although less precise, algorithm. In section 5

we make precision considerations. In section 6 we present computational evidence of

the preceding analysis using randomly generated instances. We close with concluding

remarks in section 7.

2 The problem: origin and motivation

The general mathematical framework where editing takes place is the problem of es-

timation in finite populations, commonly known as survey sampling (Cochran, 1977;

Hansen et al., 1966; Särndal et al., 1992). Given a set U = {1, . . . , N} of N identifiable
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so-called population units with numeric variables y
(q)
k (q = 1, . . . , Q) associated to each

element k (k = 1, . . . , N ), population quantities F
(m)
U = fm(y1, . . . ,yN ) are to be esti-

mated by selecting a probabilistic sample s ⊂ U according to a sampling design p(·),
where p(·) denotes a probability measure over the set S = Q(U) of all possible samples

s. Without a substantial loss of practical generality, let us assume that the popula-

tion quantities to be estimated are the population totals Y
(q)
U =

∑

k∈U y
(q)
k . By and

large, these are estimated by using so-called sampling weights ωks attached to each

population unit k for the selected sample s in the expression of a homogeneous linear

estimator of the form Ŷ
(q)
U =

∑

k∈s ωksy
(q)
k (see e.g. Särndal et al. (1992) for details on

how to construct the sampling weights). Since the sampling scheme is probabilistic,

it is mandatory to express the accuracy of the estimators, usually through the mean

squared error due to sampling variability: MSEp

(

Ŷ
(q)
U

)

= Ep

[

(

Ŷ
(q)
U − Y

(q)
U

)2
]

. The

smaller MSEp

(

Ŷ
(q)
U

)

, the more precise the estimation.

In the survey production process variable values y
(q)
k for units k in the sample s are

measured through different data collection modes, regretfully all subjected to errors

(see e.g. Groves (1989)). Selective editing focuses upon so-called influential measure-

ment errors. That is, measurement errors y
(obs,q)
k 6= y

(0,q)
k , where y

(obs,q)
k denotes the

collected or observed value of variable q for unit k and y
(0,q)
k stands for the true value

of variable p for unit k, which have a great impact on estimates
∣

∣

∣
Ŷ

(obs,q)
U − Ŷ

(0,q)
U

∣

∣

∣
≫ 1,

where Ŷ
(obs,q)
U =

∑

k∈s ωksy
(obs,q)
k and Ŷ

(0,q)
U =

∑

k∈s ωksy
(0,q)
k .

To deal with measurement errors it is customary to use additive model errors, so

that y
(obs,q)
k = y

(0,q)
k + ǫ

(q)
k , where ǫ

(q)
k denotes the measurement error for variable p and

unit k. As a working hypothesis, this error is usually conceived as a random variable,

hence also y(obs,q) and conveniently y
(0,q)
k , with a joint probability distribution denoted

by m. The combinatorial optimization problem setting starts from introducing binary

variables rk ∈ B, which flag those units which must be edited (rk = 0) and those

which do not need editing at this stage (rk = 1). This assumption rests upon the idea

that editing tasks drive us from the observed values y
(obs,q)
k for all variables of a given

unit k to their true values y
(0,q)
k , so that we can naturally define the edited value of

each variable p and unit k as y
(ed,q)
k (r) = y

(0,q)
k + rkǫ

(q)
k . Thus, population quantities

estimates are calculated with the estimators Ŷ
(ed,q)
U (r) =

∑

k∈s ωksy
(ed,q)
k (r).

As guiding principles in selective editing we pursue (i) to reduce the amount of

editing resources to be used and (ii) to keep estimation accuracy within acceptable lev-

els. Principle (i) drives us to the objective pseudo-Boolean function z(r) =
∑

k∈s rk =
e
t
r, where e denotes the vector of ones. Principle (ii) allows us to construct the fea-

sibility region of our problem. This is done by imposing MSEpm

(

Ŷ
(ed,q)
U (r)

)

≤ m2
q,

where m2
q are conveniently chosen nonnegative upper bounds (to be discussed also
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elsewhere). But this mean squared error admits the following decomposition (see

Salgado (2011) for details):

MSEpm

(

Ŷ
(ed,q)
U (r)

)

= MSEp

(

Ŷ
(0,q)
U

)

+ Epm

[

(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)2
]

+ 2 · Epm

[(

Ŷ
(0,q)
U − Y

(q)
U

)

·
(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)]

.

Now, the first term of the rhs is the mean squared error due only to sampling vari-

ability, so it is not affected by editing tasks, and, on the other hand, under general

working hypotheses the estimators Ŷ
(0,q)
U − Y

(q)
U and Ŷ

(ed,q)
U (r) − Ŷ

(0,q)
U can be consid-

ered uncorrelated, so that the cross term can be discarded. Thus we will focus upon

Epm

[

(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)2
]

by writing

Epm

[

(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)2
]

= Ep

[

Em

[

(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)2 ∣
∣

∣s

]]

.

We will set the accuracy by bounding

Em

[

(

Ŷ
(ed,q)
U (r)− Ŷ

(0,q)
U

)2 ∣
∣

∣s

]

≤ m2
q, (1)

where the upper bounds m2
q are chosen accordingly. It is immediate to rewrite in-

equality (1) in an algebraic fashion by defining matrices M (q), with entries M
(q)
kl =

ωksωlsEm

[

ǫ
(q)
k ǫ

(q)
l

∣

∣

∣s
]

. Thus restrictions are expressed as r
tM (q)

r ≤ m2
q .

If we denote by n the sample size, i.e. n = |s|, the binary quadratically constrained

linear program (BQCLP hereafter) can be finally expressed as:

max e
t
r

s.t. r
tM (q)

r ≤ m2
q , q = 1, . . . , Q,

r ∈ Bn.

(2)

Matrices M (q) are constructed after statistically modelling the measurement error,

which is beyond the scope of this work. They will be positive semidefinite matrices. A

further remark about the survey production process will drive us to a slightly gener-

alized BQCLP. Editing tasks in a statistical operation are subjected to the conditions

of its field work organization. In this sense, a prioritization of units for their editing

is required, which we propose to find by concatenating succesive solutions to problem

(2) with different bounds m2
q after imposing further restrictions of some of the com-

ponents of r, i.e. fixing rk = 1 for k ∈ I∗1 and rk = 0 for k ∈ I∗0 for each succesive

resolution of problem (2). Details will be discussed elsewhere; nonetheless, problem

(2) is straightforwardly generalized to
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max e
t
r

s.t. r
tM (q)

r ≤ m2
q , q = 1, . . . , Q,

rk = 1, k ∈ I∗1 ,

rk = 0, k ∈ I∗0 ,

r ∈ Bn.

(3a)

By later convenience we reformulate problem (3a) in terms of an index set variable

I1 defined by I1 = {k ∈ I : rk = 1}, where I = {1, . . . , n}. Thus we will reformulate

problem (3a) as

max |I1|

s.t.
∑

k∈I1

∑

l∈I1

M
(q)
kl ≤ m2

q, q = 1, . . . , Q,

I1 ⊃ I∗1 ,

I − I1 ⊃ I∗0 ,

I1 ∈ P (I) .

(3b)

Finally, let us point out as practical computational requirements that problem

(3b) is to be applied to maximally disaggregated publication cells or the smallest pop-

ulation domains Ud such that U =
⋃D

d=1 Ud, whose respective sample sizes nd = |sd|
typically range up to very few thousands1. Units prioritization requires concatenat-

ing around nd BQCLPs for each domain Ud. This means that computation speed is a

concern. On the other hand, a precision loss in the case of suboptimal feasible solu-

tions implies that a number of units greater than the optimal one is actually flagged

for editing, whereas accuracy constraints are all fulfilled. Provided that the loss of

efficiency by flagging too many units is not too great, this establishes an acceptable

practical framework to search for a solution to the BQCLP.

3 A first algorithm

Within the general practice-oriented framework depicted in the preceding section we

will propose a first algorithm to find a suboptimal feasible solution to the general

BQCLP (3b). We define the following infeasibility function.

Definition. Let M (q), m2
q, I∗1 and I∗0 define an instance of a BQCLP. We define the

associated infeasibility function h by

h : P (I) → R
+

I1 → h(I1) =

Q
∑

q=1





∑

k∈I1

∑

l∈I1

M
(q)
kl −m2

q





+

,

1This remark refers to official statistics publication requirements at Spanish National Statistical

Institute as of the present paper’s date of publication.
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where we denote (x)+ = max{x, 0}.

Notice that h(I1) = 0 if, and only if, I1 is feasible. Also, note that computation of

h(I1) takes an asymptotic time O
(

n2
1 ·Q

)

, where n1 = |I1|. We propose the following

greedy algorithm:

Algorithm 1. Let M (q), m2
q , I∗1 and I∗0 define an instance of a BQCLP. Define an algo-

rithm with the following steps:

1. I1 := I − I∗0 .

2. IF h(I1) = 0 OR I1 = I∗1 , STOP.

3. I(I1) := {I ∈ P (I) : I = I1 − {i}, i ∈ I1 − I∗1}.

4. I1 := argmin (h(I) : I ∈ I(I1)). In case of multiple I1 choose one at random.RETURN

TO STEP 2.

Starting from the initial solution with the a priori greatest cardinality, this algo-

rithm drops out iteratively one index searching for feasibility by minimizing locally

the infeasibility function. Notice that if I1 = I∗1 is not feasible (h(I∗1 ) > 0), the algo-

rithm may stop resulting in a nonfeasible solution. On the one hand, regretfully this

does not mean that the feasibility region is empty, since the algorithm is heuristic: a

possible solution I1 = I∗1 ∪ {i∗}, with i∗ ∈ I − (I∗0 ∪ I∗1 ) is not ruled out. An elementary

example is given by matrix M =
(

5 −2
−2 1

)

, bound m2 = 4 and fixed index set I∗1 = {1}.

It is clear that h(I∗1 ) > 0 while h({1, 2}) = 0. On the other hand, fortunately enough,

fixing I∗1 such that h(I∗1 ) > 0 will not be a practical case, since it implies not to edit a

set of units incurring in a loss of precision above the established bounds.

Running time in a worst-case analysis is straightforwardly computed. Since steps

2 to 4 are run n − n∗
1 − n∗

0 times in the worst case, where n∗
0 = |I∗0 | and n∗

1 = |I∗1 |, and

the longer step in terms of elementary operations, step 4, takes an asymptotic time

O
(

(n1 − n∗
1)n

2
1P

)

, the running time T (n,Q) is given by T (n,Q) = O
(

(n − n∗
1 − n∗

0)
4 ·Q

)

.

4 A second algorithm

With the purpose of speeding up the algorithm, let us carry out the following modi-

fication. Let us consider two succesive solutions I∗1 and I1 = I∗1 ∪ {i∗} (in algorithm

1, I1 appears before I∗1 ). Instead of choosing I∗1 as that index set minimizing the in-

feasibility function h, let us focus on maximizing the difference h(I1) − h(I∗1 ). Define

Q+ =
{

q ∈ {1, . . . , Q} :
∑

k∈I1

∑

l∈I1
M

(q)
kl −m2

q > 0
}

and Q0 = {1, . . . , Q} − Q+. Then

write

h(I1)− h(I∗1 ) =

Q
∑

q=1





∑

k∈I∗1

∑

l∈I∗1

M
(q)
kl −m2

q + 2
∑

k∈I1

M
(q)
ki∗ −M

(q)
i∗i∗





+
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−

Q
∑

q=1





∑

k∈I∗1

∑

l∈I∗1

M
(q)
kl −m2

q





+

In a heuristic fashion we will choose i∗ as

i∗ = argmaxi∈I1−I∗1





∑

q∈Q+



2
∑

k∈I1

M
(q)
ki −M

(q)
ii







 .

This enables us to propose a modified algorithm:

Algorithm 2. Let M (q), m2
q , I∗1 and I∗0 define an instance of a BQCLP. Define an algo-

rithm with the following steps:

1. Set I1 := I − I∗0 and Q+ :=
{

q ∈ {1, . . . , Q} :
∑

k∈I1

∑

l∈I1
M

(q)
kl −m2

q > 0
}

.

2. If Q+ = ∅, STOP.

3. Set i∗ := argmaxi∈I1−I∗1

{

∑

q∈Q+

(

2
∑

k∈I1
M

(q)
ki −M

(q)
ii

)}

. In case of multiple i∗,

choose one at random.

4. Set I1 := I1 − {i∗} and Q+ :=
{

q ∈ {1, . . . , Q} :
∑

k∈I1

∑

l∈I1
M

(q)
kl −m2

q > 0
}

. RE-

TURN TO STEP 2.

The idea behind the algorithm is again to search for feasibility by minimizing

the infeasibility function, now in a loose way. In this version precision is sacrificed

for speed, as the following analysis shows. In the worst case, n − n∗
1 − n∗

0 iterations

are again needed, but step 4 takes now an asymptotic running time O
(

(n1 − n∗
1)

2P
)

,

hence the global running time T (n,Q) of algorithm 2 is given by T (n,Q) = O
(

(n− n∗
1 − n∗

0)
3 ·Q

)

.

5 Precision considerations

It is immediate to realize that the solutions I
(1)
1 and I

(2)
1 found with the preceding

algorithms yield lower bounds z∗2 ≤ z∗1 ≤ z∗ for the optimal unknown value z∗ of the

objective function. To make precision considerations we will compute upper bounds

zU ≥ z∗ from the semidefinite relaxation of the BQCLP (see e.g. Luo et al. (2010);

Poljak et al. (1995)).

To arrive at this SDP relaxation, firstly let us come back to the formulation (3a)

and substitute restrictions rk = 1 if k ∈ I∗1 and rk = 0 if k ∈ I∗0 . The problem is

reformulated as

max n∗
1 +

∑

k/∈I∗1∪I
∗

0

rk

s.t.
∑

k/∈I∗1∪I
∗

0

∑

l /∈I∗1∪I
∗

0

M
(q)
kl rkrl + 2

∑

k/∈I∗1∪I
∗

0

∑

l∈I∗1

M
(q)
kl rk +

∑

k∈I∗1

∑

l∈I∗1

M
(q)
kl ≤ m2

q , q = 1, . . . , Q,

rk ∈ B, k ∈ I.
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This can be recast in almost the same form as problem (2) by defining a new index

set Ī = I − (I∗1 ∪ I∗0 ), with cardinality n̄ = n− n∗
1 − n∗

0, new matrices M̄ (q) of size n̄× n̄
with entries

M̄
(q)
kk = M

(q)
kk + 2

∑

l∈I∗1

M
(q)
kl ,

M̄
(q)
kl = M

(q)
kl , k 6= l,

and new bounds m̄2
p = m2

q −
∑

k∈I∗1

∑

l∈I∗1
M

(q)
kl . The problem is now expressed as

max n∗
1 + e

t
r

s.t. r
tM̄ (q)

r ≤ m̄2
p, q = 1, . . . , Q,

r ∈ Bn̄.

(4)

Now change (0, 1) variables rk into (−1, 1) variables r̄k and lift up the problem to

the symmetric matrix space Sn̄+1 by defining R̄ =
(

1 r̄
t

r̄ r̄r̄
t

)

. The SDP reformulation of

problem (4) is given by

max tr
(

R̄ ·Q0

)

s.t. tr
(

R̄ ·Qp

)

≤ m̄2
p, q = 1, . . . , Q,

diag
(

R̄
)

= e,

rank
(

R̄
)

= 1,

R̄ � 0,

where Q0 = 1
4

(

2n̄+4n∗

1 e
t

e O

)

, Qp = 1
4

(

e
tM̄ (q)

e e
tM̄ (q)

M̄ (q)
e M̄ (q)

)

and � denotes the Löwner partial

order. As usual, the SDP relaxation comes from dropping out the nonconvex rank

restriction:

max tr
(

R̄ ·Q0

)

s.t. tr
(

R̄ ·Qp

)

≤ m̄2
p, q = 1, . . . , Q,

diag
(

R̄
)

= e,

R̄ � 0.

(5)

The optimal solution to problem (5) will provide the upper bound zU for problem

(3a). To solve it we use the primal-dual interior point algorithm in Helmberg et al.

(1996), implemented in the C library CSDP for semidefinite programming (Borchers,

1999). In general, the resolution of (5) yields a real optimal value z∗SDP , from which

we fix an integer upper bound zU by zU = ⌊z∗SDP ⌋. Needless to say, should z1 = zU or

z2 = zU , we would obtain, respectively, an optimal solution to the BQCLP.
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6 Running times and precision loss: computational evi-

dence

To test the preceding algorithms we have applied them to several hundreds of ran-

domly generated instances. Firstly, since the generalized BQCLP (3a) can be cast in

the original form (2), we have set I∗0 = I∗1 = ∅ for our simulations. Secondly, instances

have been generated building matrices M (q) as close to real error modelling matrices

as possible. Thus, for each instance size n each matrix M (q) has been generated as

follows:

1. Construct a matrix Aq of size n × r with random entries independently dis-

tributed according to a normal probability distribution with random mean Unifc(0, 1),
where Unifc(0, 1) stands for the absolutely continuous probability distribution in

the interval (0, 1), and variance 100, i.e. [Aq]ij ≃ N(Unifc(0, 1), σ
2 = 100), and r

is a discrete uniform random variable r ≃ Unifd[0, n].

2. Compute Bp = AqA
t
q.

3. Redefine Bp := Bp + |λmin(Bp)|In.

Bounds have been generated independently as uniform random variables m2
q ≃

Unifc

[

0,
∑

k∈I

∑

l∈I M
(q)
kl

]

.

We have implemented both algorithms in R language and have used the R inter-

face in package Rcsdp (Corrada, 2010) to the CSDP library. Codes of the functions

implementing algorithms 1 and 2 are included in appendix A.

We have generated n/10 instances for each size n from n = 50 to n = 1500 in in-

tervals of 50 units with Q = 1. In figure 1 we represent the maximum, minimum and

mean values of parameter r for the n/10 values of each instance size n. For algorithm

1 we have used instances up to size n = 500 and for algorithm 2, up to n = 1500.

Regarding algorithm 1, we have measured with the built-in function system.time

the time needed to solve each instance using a 2.00GB RAM 3.00GHz CPU clock Pen-

tium 4 PC. In figure 2 we represent the maximum, minimum, mean and median val-

ues of the n/10 measured CPU times for each instance size n with Q = 1. To check the

asymptotic running time O(nα) we have adjusted a regression line log(max tCPU(n))
vs. log(n) obtaining an exponent value α = 4.0± 0.1, with a 95% confidence (figure 3).

We have proceeded along similar lines for algorithm 2, but with instance sizes

ranging from n = 50 up to n = 1500 in intervals of 50 units. CPU times and the re-

spective adjusted regression line are represented in figures 4 and 5. The exponent

value is now given by α = 3.1 ± 0.1, with a 95% confidence.

To compare the speed of both algorithms we have generated again n/10 instances

for each size ranging from n = 50 to n = 500 in 50-units intervals. We have solved
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each instance with both algorithms and measured their CPU time difference ∆T (n) =
T1(n)−T2(n). In figure 6 we represent maximum, minimum, median and mean values

of CPU time differences ∆T (n) for each instance size n.

Regarding the precision, we have solved each instance with both algorithms and

have computed the difference ∆z∗i = zU − z∗i = zU −
∑

k∈I r
(i)
k , i = 1, 2, between the

SDP-relaxed floor value zU = ⌊z∗SDP ⌋ and the corresponding suboptimal feasible solu-

tion z∗i . We represent maximum, minimum, median and 90−, 95−, 99−quantile values

of ∆z∗i for each instance size n in figures 7 and 8. Notice that the value z∗i is indeed

optimal if ∆z∗i = 0. Table 1 shows the number of solutions with ∆z∗i = 0 found for

each instance size. Note that this does not necessarily exhaust the number of optimal

solutions.

Instance size 50 100 150 200 250 300 350 400 450 500

Total Instances 5 10 15 20 25 30 35 40 45 50

Algorithm 1 2 8 12 12 12 19 18 20 23 22

Algorithm 2 1 6 7 8 6 12 12 11 13 17

Table 1: Number of solutions with ∆z∗i = 0 for algorithms 1 and 2, respectively.

On the other hand, to study the behaviour of both algorithms with respect to the

number Q of restrictions, we have fixed the size n = 200 and have computed CPU

times for n/10 = 20 instances with an increasing number of restrictions given by

Q = 5, 10, 15, . . . , 75 for algorithm 1 and Q = 5, 10, 15, . . . , 100 for algorithm 2. Results

are represented in figures 9 and 10. To check for the running time O(Qα), we have

respectively adjusted a regression line log (max tCPU(n)) vs. logQ. Computational re-

sults, depicted in figures 11 and 12, are consonant with the theoretical analysis.

7 Concluding remarks

We propose to formulate the selective editing technique in survey data editing as a

mathematical programming problem aiming at optimizing resources whilst keeping

estimation accuracy under control. Assuming some overediting (excess in the number

of units to edit), but demanding the strict fulfillment of all accuracy restrictions, we

give two greedy algorithms to find a feasible suboptimal solution. From practical

considerations, running time is a concern. In this sense, the heuristics is justified:

both algorithms run in times O(n4 · Q) and O(n3 · Q), respectively, where n denotes

the number of sampling units and Q the number of population quantities to estimate.

Regarding precision, the amount of overediting is not substantial and exact optimal

solutions are found in a non-neglectable number of cases. These results allows us to

conclude that, within this view of selective editing, the task is reduced to construct

the matrices M (q) by statistically modelling the measurement error, since the above

10



algorithms can provide solutions to the combinatorial optimization problem which are

both fast and precise enough for their use in the survey production process.

A Source codes

We include the source codes for the implementation in R functions of algorithms 1 and

2.

R code A.1: Source code for algorithm 1.

1 GreedySolution <-

2 function(matrices,bounds,fixed.1=integer(0),fixed.0=integer(0)){

3 ### CASE any(is.na(matrices))==T ###

4 if (any(is.na(matrices))) stop("Missing values in array of matrices.")

5 ### DATA READING ###

6 Q <- length(bounds)

7 n <- dim(matrices)[1]

8 if (dim(matrices)[3]!=Q) stop("Numbers of matrices and bounds differ.")

9 ### CASE n=1 ###

10 if (n==1) {if (any(matrices>bounds)) return(numeric(n)) else return(rep(1,times=n))}

11 ### FUNCTION h.restrictions ###

12 h.restrictions <- function(I.1){

13 mat <- array(matrices[I.1,I.1,],c(length(I.1),length(I.1),Q))

14 h.restrictions.vec <- -bounds+apply(mat,3,sum)

15 h.restrictions.vec[h.restrictions.vec<0] <- 0

16 return(sum(h.restrictions.vec))}

17 ### LOOP DOWN UNTIL FEASIBILITY ###

18 I.1 <- 1:n

19 if (length(fixed.0)>0) I.1 <- I.1[-fixed.0]

20 if (length(fixed.1)==0) {

21 while (h.restrictions(I.1)>0){

22 I.1.next <- matrix(numeric(length(I.1)*(length(I.1)-1)),nrow=length(I.1))

23 for (i in 1:nrow(I.1.next)) I.1.next[i,] <- I.1[-i]

24 h.restrictions.next <- apply(I.1.next,1,h.restrictions)

25 i.min <- which.min(h.restrictions.next)

26 if (length(i.min)>1) i.min <- i.min[sample(1:length(i.min),1)]

27 I.1 <- I.1.next[i.min,]}}

28 if (length(fixed.1)>0) {

29 while (h.restrictions(I.1)>0 & length(setdiff(I.1,fixed.1))>0){

30 I.1.next <- matrix(numeric(length(setdiff(I.1,fixed.1))*(length(I.1)-1)),nrow=length(setdiff(I.1,fixed.1)))

31 for (i in 1:nrow(I.1.next)) I.1.next[i,] <- union(fixed.1,setdiff(I.1,fixed.1)[-i])

32 h.restrictions.next <- apply(I.1.next,1,h.restrictions)

33 i.min <- which.min(h.restrictions.next)

34 if (length(i.min)>1) i.min <- i.min[sample(1:length(i.min),1)]

35 I.1 <- I.1.next[i.min,]}}

36 Solution <- numeric(n)

37 Solution[I.1] <- 1

38 Feasible <- (h.restrictions(I.1)==0)

39 Suboptimal.Val <- sum(Solution)

40 Output <- list(Solution=Solution,SuboptVal=Suboptimal.Val,Feasible=Feasible)

41 return(Output)

42 }

R code A.2: Source code for algorithm 2.

1 FastGreedySolution <-

2 function(matrices,bounds,fixed.1=integer(0),fixed.0=integer(0)){

3 ### CASE any(is.na(matrices)) ###

4 if (any(is.na(matrices))) stop("Missing values in array of matrices.")

5 ### DATA READING ###

6 Q <- length(bounds)

7 n <- dim(matrices)[1]

8 if (dim(matrices)[3]!=Q) stop("Numbers of matrices and bounds differ.")

9 ### CASE n=1 ###

10 if (n==1) {if (any(matrices>bounds)) return(numeric(n)) else return(rep(1,times=n))}

11 ### FUNCTION h.vec ###

12 h.vec <- function(I.1){

13 mat <- array(matrices[I.1,I.1,],c(length(I.1),length(I.1),Q))

14 h.restrictions.vec <- -bounds+apply(mat,3,sum)

15 return(h.restrictions.vec)}

16 ### FUNCTION Delta ###

17 Delta <- function(I.1){

11



18 aux <- matrix(rep(0,times=nˆ2),ncol=n)

19 for (p in Q.pos){aux <- aux+matrices[,,p]}

20 dismin <- 2*colSums(aux,na.rm=T)-diag(aux)

21 dismin[c(I.0,fixed.1)] <- NA

22 return(dismin)

23 }

24 ### LOOPS DOWN UNTIL FEASIBILITY ###

25 Solutions <- matrix(numeric(n*Q),ncol=n)

26 I.1 <- 1:n

27 if (length(fixed.0)>0) I.1 <- I.1[-fixed.0]

28 Q.pos <- which(h.vec(I.1)>0)

29 I.0 <- setdiff(1:n,I.1)

30 while (length(Q.pos)!=0){

31 i.max <- which(Delta(I.1)==max(Delta(I.1),na.rm=T))

32 if (length(i.max)>0) i.max <- i.max[sample(1:length(i.max),1)]

33 I.1 <- setdiff(I.1,i.max)

34 I.0 <- setdiff(1:n,I.1)

35 Q.pos <- which(h.vec(I.1)>0)}

36 Solution <- numeric(n)

37 Solution[I.1] <- 1

38 Suboptimal.Val <- sum(Solution)

39 h.fin <- h.vec(I.1)

40 h.fin[h.fin<0] <- 0

41 Feasible <- (sum(h.fin)==0)

42 Output <- list(Solution=Solution,SuboptVal=Suboptimal.Val,Feasible=Feasible)

43 return(Output)

44 }
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for algorithm 1 for each instance size n.
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Figure 3: Regression line to estimate α in T (n) = knα for algorithm 1.
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for algorithm 2 for each instance size n.
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Figure 5: Regression line to estimate α in T (n) = knα for algorithm 2.
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Figure 6: Comparison of CPU Time speeds for algorithms 1 and 2.
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rithm 1 for each instance size n.
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rithm 2 for each instance size n.
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Figure 10: Maximum, minimum, mean and median values of CPU Times (in seconds)

for algorithm 2 for each number of restrictions Q.
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Figure 11: Regression line to estimate α in T (Q) = O(Qα) for algorithm 1.
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