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Abstraction is real, probably more real than nature.

J. Albers.

No sólo le costaba comprender que el śımbolo genérico “perro” abarcara tantos indi-
viduos dispares de diversos tamaños y diversa forma; le molestaba que el perro de las
tres y catorce (visto de perfil) tuviera el mismo nombre que el perro de las tres y cuarto
(visto de frente).

J.L. Borges en Funes, el memorioso.

Abstract

This work is devoted to defend the claim that the modernisation and industrialisation
of official statistical production needs a unified combination of statistics and computer
science in its very principles. We illustrate our vision with concrete proposals under
current implementation at Statistics Spain. Following a bottom-up approach we give
a precise formulation of the estimation problem in a finite population, which by using
functional modularity principles has allowed us to propose a methodological classifica-
tion of level-3 production tasks within the Generic Statistical Business Process Model.
Additionally, in the same spirit we show our attempts to industrialise the statistical
data editing phase by carefully combining rigorous statistical methodology proposals
with a light-weight object-oriented software implementation. Finally, we argue that the
new sources of information for official statistics will underline the need for this unified
combination.

2



Contents

1 Introduction 4

2 A detailed definition of the estimation problem in a finite population 5
2.1 Layer 1: the point and interval estimation problem in a finite population . . . 5
2.2 Layer 2: longitudinal extension of the problem . . . . . . . . . . . . . . . . . 7
2.3 Layer 3: cross-sectional extension of the problem . . . . . . . . . . . . . . . . 10
2.4 The problem of official statistical production . . . . . . . . . . . . . . . . . . 11

3 On the complexity of official statistical production 11

4 A methodological classification of production tasks 13
4.1 A high-level proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Application to the GSBPM-based process metadata standard at Statistics Spain 15

5 Industrialising the statistical data editing phase 16
5.1 Statistical methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 The longitudinal case . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 The cross-sectional case . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Software implementation1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Statistical data editing workflow . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 An observation-prediction model for a binary variable . . . . . . . . . . . . . 24

6 New sources of information for official statistics 26

7 Some conclusions 27

A Derivation of Minkowskian global score functions 29

B Alternative theoretical proposal to find the Lagrange multipliers 30

C The unit prioritization algorithm and its equivalence with the score func-
tion approach 32

D S4 classes and methods for the repository data model 33

E A simple observation-prediction model for a binary variable 34

1As of uploading this work to the web, the actual data model implemented has evolved to a more efficient
version according to joint work with S. Saldaña, E. Esteban, J.M. Bercebal and M.R. Dı́az-Santos. Details
will be published elsewhere.

3



1 Introduction

During the past two decades official statistical production has been undergoing an inter-
nationally driven process of modernisation and industrialisation. In this regard the most
distinguishable initiative is constituted by the activities of the UNECE High-Level Group of
Modernisation of Official Statistics (HLG-MOS) [1] through all their committees. In partic-
ular, we recognize as landmarks the Generic Statistical Business Process Model (GSBPM)
[2], the Generic Statistical Information Model (GSIM) [3], and the Common Statistical Pro-
duction Architecture (CSPA) [4]. Others are the new Generic Activity Model for Statistical
Organizations (GAMSO) [5], the sets of Generic Statistical Data Editing Models (GSDEMs)
[6], and the Big Data project [7].

Some complementary initiatives within the European Statistical System (ESS) are the
recommended practices for editing and imputation in cross-sectional business surveys (ED-
IMBUS manual) [8] (being the seed for the GSDEMs), the European Statistics Code of
Practice [9] with the related Quality Assurance Framework of the ESS (ESS QAF) [10], the
Euro-SDMX Metadata Structure (ESMS) [11] for the dissemination of reference metadata,
and the Validation and Transformation Language (VTL) [12] as a standard language to ex-
press data editing validation rules, to name a few.

All these are measures to industrialise the statistical production process proposing stan-
dard tools for the many aspects of this process. By and large, all of them follow a top-down
approach by which generic proposals are made not taking into account specific methodolog-
ical details of the production. As an immediate positive consequence, statistical offices can
find a straightforward adaptation of these standards to their particular processes and sta-
tistical production is more undemandingly comparable in the international realm and thus
susceptible of standardisation to a certain degree.

In this paper we want to offer a complementary vision of the statistical production based
on a bottom-up approach by taking into account methodological aspects of the process. We
want to underline that the unified combination of statistics and computer science
must be in the core of these attempts to industrialise official statistical production. The
following vision is intended to illustrate how this combination allows us to firmly root mod-
ernising initiatives upon very concrete statistical and computer science principles.

Recognizing a noticeable distinction between scientific and technological approaches to
data analysis [13], our spirit is to select and to fuse both kinds of principles to propose a
firm theoretical basis of official statistical production which allows us to identify scientific
core elements of the process detaching them from those other elements subjected to business
organization and purely technological decisions. Rather than advocating an alternative to
the former initiatives, this is intended to offer a complementary view hopefully providing an
even stronger defense of the adoption of these international measures.

Most of the work empirically illustrating our vision has been and are being done in col-
laboration with many other colleagues at Statistics Spain, whom are duly credited along the
paper citing their concrete contributions. Those aspects of this work originally proposed by
the author, especially those not yet published in journals nor in international or national
meetings, have been detailed in different appendices. This is intended to let the central part
of the paper show our main message: the modernisation and industrialisation of offi-
cial statistical production needs a unified combination of statistics and computer
science in its very principles. More technical details intended to rigorously illustrate our
vision are thus relegated to the appendices for clarity’s sake of the discourse.

The paper is organised as follows. In section 2 we include a precise formulation of the
estimation problem in a finite population. In section 3 we argue about the complexity of
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official statistical production systems, motivating thus the usage of computer system design
principles to cope with it. These principles are briefly introduced and used for classifying
production tasks in section 4, which also illustrates its application to the process metadata
standard developed at Statistics Spain. In section 5 we include our proposals to industrialise
the statistical data editing phase currently under implementation at Statistics Spain. These
proposals illustrate the combination of statistical and computer science principles. In section
6 we argue that the new sources of information for official statistics will clearly demand this
combination. In section 7 we include some closing conclusions. All technical details of novel
proposals not yet published elsewhere have been relegated to the appendices A, B, C, D, and
E in order to make the message as clear as possible.

2 A detailed definition of the estimation problem in a

finite population

In a statistical office there exists a number of estimation problems with diverse characteris-
tics to be solved and disseminated as official statistical products. The most prominent and
most mathematically grounded one is the estimation of a given quantity of interest for a
given finite population of people, enterprises, establishments, etc. We shall call this the esti-
mation problem in a finite population, which we shall define in a detailed form in this section.

But this is not the only one. National accounts are also usually under the responsibility
of statistical offices. Demographic figures are typically within national statistical plans too
and computed with their own methodology. There are also a number of statistics compiled
not as an estimation but as a thorough counting exercise (causes of death, . . . ). In addition,
occasionally some statistical offices are in charge of election registers, official municipal pop-
ulation registers, and other administrative registers.

Herein we will concentrate only on the estimation problem in a finite population. We
will provide a detailed definition of this problem with three nested layers of complexity. The
analysis carried out throughout this work revolves exclusively around this problem. The
problem is formulated in abstract terms so as to embrace as many situations in practice as
possible.

2.1 Layer 1: the point and interval estimation problem in a finite

population

This is esentially the problem dealt with in survey sampling textbooks [14–16]. Paradoxi-
cally, they do not usually include a fully-fledged detailed definition, although most of them
do share common core elements.

Definition 2.1 (Point and interval estimation problem in a finite population). Let
U be a finite population of known size N , represented by frame populations UF1 , . . . , UFM

of size NF1 , . . . , NFM
, respectively, whose units uk are associated to object and auxiliary

variables (yk,xk), respectively. Let FU = f(y1, . . . ,yN ;x1, . . . ,xN ) be population aggregates
and c : P

(

∪M
m=1UFm

)

→ R be a cost function. Let c0 > 0. The objective of the point and
interval estimation problem in a finite population is to provide accurate point and interval
estimations of the population aggregatesFU in a partition I (and usually refinements thereof)
of the population U = ∪i∈IUi by carrying out an (imperfect) measurement process of the
object variables y over a sample s ⊂ ∪M

m=1UFm
of units under the restriction c(s) ≤ c0. The

estimates to be disseminated must satisfy agreed statistical disclosure control requirements.

This definition portrays a number of elements which deserve further attention for its rel-
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evance in the construction of the problem. Firstly by finite population2 U we understand a
set of a finite and known number N of identifiable units uk. This concept makes the dif-
ference with that of estimation in classical inference problems3. Notice the three key features
[17]: finite size, known size, and unit identifiability. These properties allow us to denote the
population units just by the simple label k.

The concept of population of analysis is an abstract concept, especially in comparison
with that of frame population. A frame population UFm

is a physical or electronic enumer-
ation of units satisfying those criteria to be considered elements of the finite population U .
In practice, most statistical operations make use of one single frame population, but it is
perfectly possible to make use of several of them for a given population of analysis [18]. The
generation and maintenance of up-to-date frame populations is a key activity in a statistical
office with specific methodological procedures.

Variables associated to each unit k alternatively belong to two main categories. Object
variables y are those whose values are object of the analysis and they are only known after
executing the measurement process over the sampled units. On the contrary, auxiliary vari-
able x have values known for all frame population units before the measurement process is
executed. It must be clear that in practice (i) it is possible to measure again these variables
x when measuring the variables y and (ii) it is possible that for some auxiliary variables we
only know their aggregate values

∑

k∈UD
xk for different domains UD ⊂ U .

The population aggregates FU are functions of the object and/or auxiliary variables. In
practice they are usually function of totals FU = f

(
∑

k∈U yk;
∑

k∈U xk

)

. The usual macroe-
conomic indices lie within this category. It is important to notice that they are never pa-
rameters of a probability distribution, as in classical inference problems [19], hence the term
aggregate instead of parameter. Moreover, we underline the multivariate character of this
estimation problem: we are estimating several population aggregates, not just one (hence
the boldface in FU and f).

Estimations must be point and interval estimations. This obliges the statistical office
to produce both estimates for population aggregates and a measure of their precision. In-
deed, in statistical rigour, this measure is as important as the population aggregate estimates
themselves (anyone can produce an estimate, only a few can make it accurate).

Although we explicitly mention the sample s in definition 2.1, notice that we do not claim
that the sample s must be selected according to a probabilistic sampling design p(·). As a
matter of fact, in practice many statistical operations do not use probabilistic designs but
cut-off sampling designs. In any case, the sample selection is a central element of the solution
to this problem.

Let us underline an essential difference with the estimation problem in classic inference. In
the estimation problem in a finite population there is no element of probability theory
in its definition; in classical inference the concept of population itself inherently incorporates
the notion of probability distribution (see e.g. [19]). This difference was already pointed out
in [20]. Definition 2.1 does not contain an implicit approach to sample selection, which can
range from probabilistic sampling designs to model-based techniques.

So far, we have commented on usual elements of production. But definition 2.1 also
include unconventional ones. First, we make explicit the multivariate character of the esti-
mation problem in the sense that estimates are required not only for the whole population
U , but usually for a great number of domains Ud ⊂ U generally in a nested hierarchy. This is
usually the basis for a further implicit requirement of numerical consistency of all estimates,

2Often also population of analysis, object population, or simply population.
3Sometimes also misleadingly referred to as estimation in an infinite population.
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which is behind the multipurpose property of sampling weights [21]. In practice, there exist
two types of domains: planned and unplanned [22]. The former are basically population
partitions known beforehand and taken into account in the design phase of the solution to
the problem. The latter are domain estimates about which users demand information about.
This occasionally drives the statistical office towards the problem of small domain estimation
[23].

The second novel element is the measurement process of the object variables. This explicit
mention wants to underline that, given the imperfect nature of this process, the considera-
tion of non-sampling errors is absolutely essential to reach a satisfactory solution [24]. As a
matter of fact, this imperfection is the common link among this kind of errors. Non-response
is but the impossibility to carry out the measurement process. Frame coverage errors arise
due to an imperfect measurement process over auxiliary variables in the frame population.
Measurement errors (i.e. informed values differing from true values yobs

k 6= y0
k) are the direct

consequence of the imperfect measurement over object variables.

The measurement process is the core of one of the most resource-consuming and man-
agement-demanding production phases, namely data collection. Also, some theoretical di-
gressions arise when considering the operative consequences of data collection. For instance,
complementary notions of statistical units appear when considering those population enti-
ties (people, households, enterprises, establishments, etc.) providing the values of the object
variables (the so-called observation units in contrast with the analysis units). As an illus-
tration notice the difference in price statistics between product prices themselves and the
establishments informing about these prices.

The third novel element in definition 2.1 is cost. Cost must be understood in a general-
ized sense involving financial and human resources, response burden, timeliness, punctuality,
. . . The inclusion of cost in the definition of the problem, in our view, is fundamental not
only from a practical standpoint but especially from the purely mathematical point of view.
Without cost the mathematical solution is trivial: make a census4. Thus, without cost, the
mathematical problem is meaningless. Cost arises in different phases of the solution to the
problem: sample selection, statistical data editing, etc.

Finally, the last novel element in definition 2.1 is the statistical disclosure control, which
must be dealt with in both the legally normative and purely methodological sides. This in-
clusion arises from the relevance of statistical dissemination in official statistics. Probably, in
other statistical production realms, this requirement is not necessary, but in official statistical
production is fundamental.

2.2 Layer 2: longitudinal extension of the problem

Definition 2.1 does not include the time dimension of the problem. However, in practice,
populations evolve with time and statistical offices must monitor this evolution.

In this second layer of the complete definition we explicitly include the time variable t
in the former elements of definition 2.1. A priori this does not seem difficult but it involves
certain complexities needing explicit formulation not only in practice but also theoretically.

When the time variable t is introduced, problems regarding time scales arise. To begin
with, if we consider the finite population Ut as it evolves in time, it is clear that estimates
are needed not for particular instances of time ti but for extended periods of time. Let
us consider Labour Force Surveys (LFSs) as an illustration. Estimates are usually referred

4Notice that a census is a mathematical solution, never a statistical nor practical solution. Indeed taking
into account accuracy as the most primitive form of cost, a census can be more inaccurate than a sample
[25], not to mention other cost issues such as timeliness, cost-effectiveness, response burden, . . .
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to natural year terms or months, but within these periods, the population of analysis evolves.

How should estimates referred to extended time periods be understood? E.g. how should
an unemployment rate along a term be understood? Firstly we recognize two relevant time
scales associated to problem 2.1. On the one hand, we denote by τU the time scale associated
to the natural evolution of the population of analysis Ut. On the other hand, we denote by
τD the time scale given by the time period of dissemination (the reference time period).

In terms of these time scales we can formalise coarse-graining procedures of the concepts
of population and of variable. What should we understand by the population U[ti,ti+1] for an
extended time period [ti, ti+1] (say, a term or a month)? What should we understand in the
case of variable values yk[ti,ti+1] for each unit k?

By coarse-graining procedure we mean a rigorous mathematical formulation by which
we obtain a synthetic population U[ti,ti+1] out of all populations Ut for each time instant
t ∈ [ti, ti+1]. Similarly for variable values yk[ti,ti+1]. With abuse of notation we denote both
cases as U[ti,ti+1] = g[ti,ti+1] (Ut) and yk[ti,ti+1] = g[ti,ti+1] (ykt).

To ease the notation, it is reasonable to expect that practical coarse-graining procedures
do not depend on both initial and final time instances, but only on the duration of the interval
τ = ti+1− ti, i.e. on the time scale τ of the period. Thus we denote by gτ the coarse-graining
procedure over the scale τ . For producing estimates we will typically need populations and
variable values coarse-grained over the dissemination time scale τD.

Let us consider some particular cases.

• Case τD ≈ τU .

In this case the dissemination time scale coincides with the natural time scale of change
of the population. An illustrative example is constituted by monthly business statis-
tics where the business population can be considered constant in one-month periods5.
The coarse-graining procedure gτD is trivial in this case, since U[ti,ti+τD] = Ut∗ where
t∗ ∈ [ti, ti + τD]. Trivially, the size of the coarse-grained population will be given by
N[ti,ti+τD] = Nt∗ .

This coarse-graining procedure must also be similarly applied upon the frame popula-
tions UFmt to produce the coarse-grained versionUFm[ti,ti+τD] = UFmt∗ andNFm[ti,ti+τD ] =
NFt∗ .

For variables, since the population does not change over the coarse-grained period, their
coarse-grained values are trivially given by yk[ti,ti+τD] = ykt∗ , i.e. their constant values
over the period.

• Case τD > τU .

This represents the situation in which the population changes faster than the dissemina-
tion time scale. For example, in European LFSs the population of unemployed workers
changes weekly6 (τU = 1 week) whereas the dissemination is made in a three-month
time period (τD = 1 term).

In this case the coarse-graining procedure gτD must formalize which units k in every
population Ut, t ∈ [ti, ti + τD], constitute the coarse-grained population U[ti,ti+τD].

5This is open to debate. There may be cases in which the business does change in less than a monthly
scale. For the present discussion, for illustrative purposes we are assuming that businesses are “frozen” during
each month.

6It is weekly because of the very definition itself of employment [26].
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The size of U[ti,ti+τD ] can be expressed in abstract terms as N[ti,ti+τD ] =
∫

τD
Ntdµ (Nt)

and can be straightforwardly computed as the cardinal of U[ti,ti+τD].

These coarse-graining procedures must also be similarly applied upon the frame popu-
lations UFmt to produce their coarse-grained counterparts.

For variables, now the population do change over the coarse-grained period, and the
coarse-grained values must then be given in abstract terms by yk[ti,ti+τD] =

∫

τD
yktdµ(ykt),

where µ denotes an abstract measure expressing how values are synthetised for the
whole time period.

This point deserves a further illustration. Let us consider a typical LFS where the
variable “employed” ykt ∈ {0, 1}, t ∈ {weekj} has a natural time scale of τU = 1 week
(reference time period). Aggregate estimates are disseminated in a time scale of τD =
1 term. The coarse-grained version of the variable ykt is trivially given by

yk[ti,ti+1] =
∑

j∈weeks[ti,ti+1]

yktj .

• Case τD < τU

This case is meaningless.

These are not the only time scales associated to the problem which has to be taken into
account. We can also consider the time scale τM associated to the measurement process
upon the statistical units. Let us think of a statistical operation monthly disseminated
(τD = 1 month) but with a week-long questionnaire (τM = 1 week). Let yk denote the
variable “number of open days” for establishment k. Notice that τM < τD. What is the
(coarse-grained) number of open days for the whole month for each unit k, which indeed is
to be used to produce the estimates of interest, when the unit only responds for a week-long
period within that month? A first crude choice could be to impute the same pattern all over
the month (D days) [27]:

yk[ti,ti+τD ] =
D

7
× ykweek.

Alternatively we can try a more sophisticated model

ykt = ykweek + y∗kweek1 + y∗kweek2 + y∗kweek3,

where y∗kweekj are imputed values for the rest of weeks j within the referenced month not in-
cluded in the response. These imputed values can be the result of some elaborated statistical
models.

All this is condensedly expressed in the compact notation yk[ti,ti+τD] = gτD(ykt). Once the
time dimension is introduced through coarse-graining procedures, a more general definition
of the estimation problem in a finite population can be formulated in terms of the coarse-
grained elements. Henceforth we shall denote the coarse-grained dissemination periods by
tj, j = 1, . . . , J .

Definition 2.2 (Longitudinal extension of the estimation problem in a finite
population). Let {Utj}j=1,...,J be a family of finite populations, with natural evolution
time scale τU , coarse-grained over the dissemination time scale τD, with sizes Ntj , re-
spectively, and represented by coarse-grained frame populations UF1tj , . . . , UFM tj of sizes
NF1tj , . . . , NFM tj , whose units k are associated with coarse-grained object and auxiliary vari-
able values (yktj ,xktj ), respectively. Let FUtj

= f(y1tj , . . . ,yNtj ;x1tj , . . . ,xNtj ) be coarse-

grained population aggregates and

ctJ : P
(

∪M
m=1UFmtJ

)

→ R
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be a cost function. Let c0 > 0. The objective of the point and interval estimation problem
in a finite population over time (aka longitudinal extension of the problem) is to provide
accurate point and interval estimations of the population aggregates FUtj

in a partition I

(and usually refinements thereof) of the populations Utj = ∪i∈IUitj by carrying out an

(imperfect) measurement process of the object variables ytJ over a sample s ⊂ ∪M
m=1ŨFmtJ

of units under the restrictions ctJ (s) ≤ c0. The estimates to be disseminated must satisfy
agreed statistical disclosure control requirements.

Notice that this extended definition is similar to definition 2.1 but using coarse-grained
elements over the time scale τD.

We are assuming that the last time period tJ is the time period under which the current
estimates are to be produced. Thus, definition 2.2 establishes that estimations must be com-
puted for all periods j ≤ J , which implicitly introduces the need to generate and coherently
maintain time series of estimates and their coefficients of variation (through introducing late
responses and/or using link coefficients, backcasting techniques, index rebasing procedures,
. . . when necessary). Furthermore, it is usual to disseminate these time series both seasonally
and calendar-effect adjusted.

2.3 Layer 3: cross-sectional extension of the problem

A statistical office never produces one single statistics. On the contrary, a number of sta-
tistical operations must be produced and disseminated simultaneously for different domains
according to a national or international statistical Act. Many of them share common ele-
ments of the problem (households, establishments, enterprises, etc.), not to mention human
and material resources.

It is natural (even compulsory) to request that resources for production and dissemina-
tion must be shared among all statistical operations within a statistical office. Furthermore,
in the international realm, there already exist important efforts to share resources across
different statistical offices themselves.

This suggests that a new layer of complexity is needed in the definition of the estimation
problem:

Definition 2.3 (Cross-sectional extension of the estimation problem in a finite
population). Let Pq, q = 1, . . . , Q be longitudinal estimation problems in a finite popula-
tion, respectively. Let C be a global cost function defined over the set of statistical operations
{Pq}q=1,...,Q. Let C0 > 0. The objective of the point and interval estimation problem in
a finite population across several statistical operations (aka cross-sectional extension of the
problem) is either to provide accurate point and interval estimations for each problem Pq

under the restriction C(P1, . . . ,PQ) ≤ C0 or to minimize the global cost C(P1, . . . ,PQ) pro-
vided that all statistical operations Pq produce accurate point and interval estimations. The
estimates to be disseminated across all statistical operations must satisfy agreed statistical
disclosure control requirements.

Again, cost must be understood in a generalized sense involving financial and human
resources, response burden, timeliness, punctuality, . . . As an illustrative consequence, let us
consider response burden, which introduces a particular methodological problem: the sample
selection coordination problem (see e.g. [28]).

But consequences are not only methodological. The cross-sectional character introduces
very relevant restrictions in the field work (especially in the data collection phase). Important
management science issues arise when dealing with the planning, coordination, and usage of
both human and material resources, since they have to be reused in different statistical op-
erations.
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Notice that the problem has been formulated with two different possible objectives, i.e.
either given a fixed budget we concentrate on producing and disseminating accurate esti-
mates or we seek to minimize the production and dissemination global cost provided that
estimates are accurate enough. This is a top management decision intricately related with
the financial and fund-raising capacity of the organization.

Finally we underline that the problem is not necessarily to be applied as a whole to all
the statistical production in an office, which can be divided in sets of operations upon which
the most adequate coarse of action in each case shall be taken.

2.4 The problem of official statistical production

As stated, the preceding definitions only focus on the estimation problem in a finite popula-
tion. We believe that the rest of problems to be solved in a statistical office must be provided
with similar definitions and put them all together to formulate the problem of global official
statistical production.

In the rest of this work we shall make use only of the above definitions, thus the resulting
analysis will be necessarily partial at the global production scale.

3 On the complexity of official statistical production

When one first steps into a statistical office as an official statistician it is struck by the
usual statement about how different statistical production and textbook academic statistics
are. Apart from other factors, in our view, this is due to the lack of experimental science
background in the academic skills of most official statistics professionals, especially mathe-
maticians, statisticians, economists, and econometricians.

Nonetheless, they are completely right. We have a good distance from statistical formu-
las on a piece of paper or even in the form of simple software prototypes to their industrial
usage in a production chain of, say, hundreds of statistical operations. But this should not
be surprising. We claim that the missing element in this gap is complexity: a statistical
production system is a complex system.

Although a definitive scientific definition of complexity is extremely difficult, we can easily
recognize in statistical production systems several features defining a complex system [29]:

• Large number of components: a statistical operation can range from a few tens of
object and auxiliary variables for short-term statistics to a few hundreds in the case
of structural surveys, not mentioning the several dozens of estimates to be produced
accross a great number of population domains or paradata generated during the exe-
cution of the process. This must be multiplied by the number of statistical operations
under production in a statistical office.

• Large number of interconnections: needless to say, most of the different production
tasks are intricately interconnected in such a way that a variation in a given task can
have unexpected waterbed effects in another tasks [30].

• Many irregularities: as survey conductors and domain experts rightfully underlined
when referring to their own statistical operations, each survey portraits specific char-
acteristics somehow singling them out from the rest. No clear-cut regularity allowing
production designers to pose universal rules can be cross-sectionally identified among
all statistical operations.

• A long description: as a further complication to the preceding feature, protocols,
rules, guidelines, or instructions to accomplish the diverse production tasks cannot be
described in a homogeneous fashion. A lot of exceptions are indeed the rule.
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• A team of designers, implementers, or maintainers: not only is it that a high
number of different professional profiles ranging from IT experts to statisticians are
needed to produce official statistics, but also do they need intensive coordination and
communication.

Based on these features, different simple models can be used to justify the so-called square

law of computation [31], which can be adequately represented by figure 1, in terms of resources
and complexity.

Resources

Complexity

Figure 1: Square law of computation in terms of complexity and resources

A simple model justifying this behaviour can be borrowed from computer software engi-
neering [29]. Just consider the usual conception of the execution of the statistical production
process as the downstream sequence of sample selection, data collection, statistical data edit-
ing, aggregate and variance estimation, and dissemination. Let NT denote the number of
tasks involved in the execution of this process. Assume that the number of errors to be
corrected Ne in the whole process is proportional to the number of involved tasks Ne ∝ NT

(the higher the number of tasks, the higher the number of errors to be corrected) and that
they are randomly distributed accross the process. Survey conductors execute the process
and notice an error, then find and fix the error. Let us also assume that the time te it takes
to find an error is proportional to the number of involved tasks te ∝ NT . Then the total time
needed to find and fix all errors Te will be roughly given by

Te ∝ Ne × te

∝ N2
T .

The bottom line of this law is the fact that for each increasing unit of complexity (in
arbitrary units; e.g. a new breakdown of estimates, a change of normative regulations, . . . a
new task in the process, in definitive) requires an increasing amount of resources (see figure
1). It is not only a matter of how much resources and how many tasks are to be executed,
but also of how they are related through the production model.

Indeed, should the production model be kept under the former downstream premises,
the increasing demand of information upon statistical offices will eventually collapse the
production. Notice that the quadratic behaviour is somehow arbitrary for our argument and
any increasing convex curve deduced from those features will support our claim. Complexity
is the ultimate reason why resources hypothetically enough to accomplish a given task are
not sufficient when that task is part of the production system.
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4 A methodological classification of production tasks

4.1 A high-level proposal

Our approach to deal with the complexity of statistical production bears on the reflection
that, since the fabric of statistical production is information, we should use some principles of

computer system design to cope with this complexity. In particular, we claim that functional
modularity (modularity + abstraction) together with hierarchy and layering [29] arise as use-
ful principles to structure statistical production in a way to cope with its inherent complexity.

To illustrate how these principles tackle complexity let us elaborate on the preceding
simple model underlying the quadratic law (see also [29]). If the production process is
divided into M independent modules so that each error can be immediately categorized
within one of the modules, then the total time needed to find and fix all errors Te can be
somehow ameliorated. Assuming for simplicity that each module involves roughly NT

M tasks,
we can write

Te ∝ (Te for each module )×M

∝

(

NT

M

)2

×M

∝
N2

T

M
.

Thus, two such modules would entail a reduction up to one half of the original time,
three such modules would entail a reduction up to one third, and so on. Notice that the
key element is the independent character of the modules so that any error can be straight-
forwardly classified within one of them. This is achieved not only with modularity per se

but designing modules with appropriate interfaces, i.e. following the principle of abstraction.
This is functional modularity.

Thus, the design of functional modules is key, which implies identifying adequate inter-
faces, i.e. natural boundaries among the different parts of the production process. We claim
that the methodology7 of statistical production must be the guiding principle to design these
modules.

We make the following proposal concentrating upon the definition of the estimation prob-
lem in a finite population formulated in section 2. All tasks in the production process will
be parameterised according to (i) its methodological group and (ii) its implementation state.
We identify the following methodological groups motivated by the preceding formulation of
the estimation problem in a finite population:

1. Problem construction.- This group embraces all tasks devoted to set up precise
identifications of each concrete element of the estimation problem as formulated in its
definition, especially the population of analysis (equivalently, the population units), the
variables, the population aggregates precisely expressed in terms of the variables, and
the dissemination domains, but also the frame population(s), the accuracy restrictions,
the limiting costs, and the statistical disclosure control restrictions. Details can be
numerous boiling down to legal and budget issues. The contact with stakeholders is
compulsory to accomplish an adequate problem construction. The key ingredient in
this group is the domain expert knowledge.

2. Frame construction.- This group embraces all tasks devoted to the construction and
maintenance of population frames (see e.g. [32]). This is usually carried out by collecting

7Methodology must not be understood in the usual restricted sense referring to statistical theory (see
section 5) but embracing all aspects of statistical production, i.e. both mathematical-statistical and computer
science aspects.
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a high number of administrative registers of diverse nature (population, citizenship,
taxes, . . . ). Record linkage techniques and thorough data editing (different in objectives
to statistical data editing –see below) are the core statistical tools used in this group.

3. Sample selection.- This group involves all statistical tools devoted to select the sam-
ple, from probabilistic sampling theory [16] to cut-off sampling techniques [33] and
other more specific methods such as capture-recapture methods [34].

4. Data collection.- This group embraces all tasks devoted to measure the values of
object (and possibly some auxiliary) variables [35]. Notice the essential difference of
this measurement process with that in the frame construction group. It is important in
this stage to design, generate, and feed an adequate system of data collection paradata.

5. Statistical data editing.- This group involves all tasks devoted to detect and treat
errors in the measurement process, i.e. frame coverage errors, non-response and mea-
surement errors [24]. It embraces both error detection and error treatment with in-
teractive, automatic, selective, and macro editing techniques, as well as imputation
techniques [36].

6. Aggregate and accuracy estimation.- This group consists of the construction of
estimators according to the sample selection and the edited (possibly imputed) variable
values [37]. The estimation involves not only population aggregates estimation but also
that of their accuracy (typically through coefficients of variation) [38]. Also variation
rates in a yearly, quarterly, monthly, . . . basis are of usual interest. The main statisti-
cal methods include re-weighting techniques and variance estimation methods, but in
the case of unplanned domains it also embraces small domain estimation and related
techniques [23].

7. Time series construction.- This group embraces all tasks devoted to produce up-
to-date time series of different estimates. In most cases this involves adding the new
estimates to the times series, but from time to time backcasting techniques due to
standard classification changes [39] or linking coefficients because of index rebasing
must be used. Seasonal and calendar-effects adjustments [40] are also included here.

8. Statistical dissemination.- This group embraces all tasks devoted to make resulting
estimates reach users. This involves statistical data communication techniques and
data visualization methods. In the case of official statistics, techniques for statistical
disclosure control [41] are of special relevance.

9. Process configuration.- This group embraces all tasks devoted to establish the correct
workflows and to prepare and maintain overall human and material resources.

10. IT architecture configuration.- This group contains all tasks devoted to the design,
development, execution and monitoring of the configuration of the IT architecture
supporting all preceding modules.

The second coordinate to categorize a production task is to classify its implementation
state as (i) design, (ii) build, (iii) execute, and (iv) monitor (see also [2]). Thus, any pro-
duction task can be categorized in any of the cells of table 1. We include in this table some
possible subgroups for illustration’s sake (not complete).

Notice that this is just a high-level classification, since each group can be further decom-
posed into more detailed subgroups. For example, in the statistical data editing group we
can recognize error detection and error treatment tasks, which although intricately related
in the execution stage, they are clearly different in the design phase. These subgroups can
be further decomposed down to finer methodological methods (e.g. interactive, automatic,
selective, and macro editing techniques or editing and imputation strategy workflow design,
execution, and monitoring).
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Design Build Execute Monitor

Problem construction
Frame construction

Construction by record linkage

Thorough data editing

Sample selection
Probabilistic sample selection

Non-probabilistic sample selection

Data collection
Statistical data editing

Error detection

Error treatment

Estimation
Aggregate estimation

Variation rate estimation

Accuracy estimation

Times series construction
Backcasting

Linking

Seasonal and calendar-effect adjustment

Statistical dissemination
Statistical disclosure control

Data visualization

Communication to stakeholders

Process configuration
IT architecture configuration

Databases configuration

Table 1: Methodological classification of statistical production tasks.

A suspicious reader may enquire about the relationship with the GSBPM, which is the
internationally accepted business production model. As stated in section 1, the proposed
classification is not an alternative but a complement to the usage of the GSBPM. Table 1
can be viewed as an assistance to identify production tasks within the GSBPM.

For example, all tasks in the group 1. Problem construction can be categorized in the
GSBPM group 1. Specify needs. Also, all tasks in the design state of any methodological
group must be assigned to some of the GSBPM level-2 subprocesses within the GSBPM
level-1 Design phase. Similarly for (i) those in the build state with respect to the GSBPM
level-1 Build phase, (ii) those in the execution state with respect to GSBPM level-1 Collect,
Process, Analyse, and Disseminate phases, and (iii) those in the monitoring state with re-
spect to GSBPM level-1 Evaluate phase.

Occasionally we find GSBPM’s methodological sizing somehow hard to recognize and thus
categorizing specific production tasks also hard to assign to level-2 subprocesses. The purely
methodological classification in table 1 can assist in this goal. Next subsection illustrates this
with the specific example of the process metadata standard for the statistical production at
Statistics Spain [42].

4.2 Application to the GSBPM-based process metadata standard

at Statistics Spain

Recently, Statistics Spain has produced a GSBPM-based standard for the process metadata
of its statistical production [42]. The standard is fully based upon the GSBPM incorporating
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Design Build Execute Monitor

Problem construction 1.m.n 3.2.10, 3.2.15 2.1.n, 2.2.n,
2.5.7, 5.6.1

6.5.1, 8.1.n,
8.2.n

Frame construction 2.4.1 3.2.1, 3.5.1 4.1.1 6.5.1, 8.1.n,
8.2.n

Sample selection 2.4.2-2.4.5 3.2.2-3.2.3,
3.5.1

4.1.2 6.5.1, 8.1.n,
8.2.n

Data collection 2.3.n, 2.5.1,
2.5.10-2.5.11

3.1.n, 3.2.4,
3.5.2

4.2.n, 4.3.n,
4.4.n, 5.2.1

5.2.2, 6.5.1,
8.1.n, 8.2.n

Statistical data editing 2.5.2-2.5.4,
2.5.10-
2.5.11, 2.5.12

3.2.5-3.2.7,
3.5.3

5.3.1-5.3.2,
6.2.1-6.2.2

5.3.3, 6.5.1,
8.1.n, 8.2.n

Estimation 2.5.8-2.5.11 3.2.11-
3.2.15, 3.5.3

5.5.1-5.5.2,
5.7.1-5.7.2,
6.1.3

5.7.3, 6.5.1,
8.1.n, 8.2.n

Times series construction 2.5.13-2.5.14 3.2.16-
3.2.17, 3.5.3

6.1.1-6.1.2 6.5.1, 8.1.n,
8.2.n

Statistical dissemination 2.5.15 3.2.18, 3.3.n,
3.5.4

6.1.4-6.1.5,
6.4.n, 7.1.1,
7.2.n, 7.3.n,
7.4.n, 7.5.n

6.5.1, 8.1.n,
8.2.n

Process configuration 2.6.1-2.6.3 3.4.n, 3.5.n,
3.6.n, 3.7.n

6.5.1, 8.1.n,
8.2.n, 8.3.n

IT architecture configuration 2.5.5-2.5.6,
2.6.4-2.6.6

3.2.8-3.2.9,
3.2.19-3.2.20

5.1.n, 5.8.1-
5.8.2, 7.1.2-
7.1.3

6.5.1, 8.1.n,
8.2.n

Table 2: Methodological classification of tasks of the Spanish GSBPM-based process meta-
data standard.

the use of the formerly mentioned computer science principles to develop a third level of
statistical production tasks within this international business process model. The adaptation
of the former computer science principles to the construction of this standard has been done
in collaboration with A.I. Sánchez-Luengo, S. Lorenzo, and M.A. Mart́ınez-Vidal and imple-
mented by a large internal working group at Statistics Spain embracing domain experts and
experts from data quality, data collection, statistical dissemination, survey sampling, and IT.

Here we offer a complementary view not included in the standard explicitly showing the
underlying classification of tasks under the above group categorization. The standard was
produced striving for functional modularity in the production process. These underlying
methodologically classified functional modules were the basis for identifying GSBPM level-3
subprocessess adapted to Statistics Spain’s needs. In table 2 we show the categorization of
each task in the standard (not included in its formulation).

5 Industrialising the statistical data editing phase

We will choose the statistical data editing module to illustrate our proposals to industrialise
the production process. We want to underline once more the interrelation between both
statistical and computer science standpoints: a full methodological proposal must embrace
all these aspects.
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5.1 Statistical methodology

Statistical data editing is one of the most resource-consuming phases in official statistical
production [43]. This drove methodologists some decades ago to develop selective editing
techniques [44–48] whose main objective is to rationalize resources and to detect influential
errors upon which interactive editing is concentrated in contrast to non-influential errors
which can be edited automatically.

The bottom line of these techniques is the assignment of an item score s
(q)
k to each object

variable y(q) for each measured unit k. This score is computed by means of the so-called local

score functions s
(q)
k = s

(

y
(q,obs)
k , ŷ

(q)
k ;xk

)

upon the observed values y
(q,obs)
k , the anticipated

values ŷ
(q)
k , and possibly some auxiliary variables xk (sampling weights, etc.). All item scores

are then used in the so-called global score function Sk = S
(

s
(1)
k , . . . , s

(Q)
k

)

to produce the

unit score Sk. Those units with unit scores Sk above a chosen threshold tk will be interac-
tively edited; the rest will be edited by automatic editing techniques.

The choice of anticipated values, local score functions, global score function, and threshold
values is made in a purely heuristic basis [36], no rigorous connection to statistical principles
is made. However, let us remind one of the virtue to be pursued by official statistics produc-
ers: “[. . . ] it seems desirable, to the extent feasible, to avoid estimates or inferences that need
to be defended as judgments of the analysts conducting the survey” [49]. Our contribution
tries to follow this direction by putting selective editing techniques upon a firm theoretical
basis and, in this formalization, to pave the way to extend its application to qualitative and
semicontinuous variables.

We will provide a high-level view of the statistical methodology, so that the combination of
this methodology and its software implementation can be more straightforwardly appreciated.
The starting point of the statistical methodology is the formulation of two general principles
[51, 52]:

(i) Editing must minimise the amount of resources deployed to interactive tasks.

(ii) Data quality must be ensured.

This drives us to a generic optimization problem. This problem boils down to two extreme
cases, namely (i) the longitudinal case, in which only object and auxiliary information of the
current time period in course is available for each unit separately (input editing) and (ii)
the cross-sectional case, in which all object and auxiliary information of this time period is
available for every unit (output editing), since data collection for the whole sample has been
accomplished.

5.1.1 The longitudinal case

The longitudinal case reduces to the resolution of a stochastic optimization problem, formerly
proposed in [50] not taking into account the sampling design, assuming stationarity for the
measurement error generation, and using the principles of duality, interchangeability, and
sample average approximation (see [50]). This optimization problem made use of general
optimization routines in languages not adopted for production conditions at Statistics Spain.
In [52] this approach was generalized in terms of a generic loss function L. To be specific,
we will concentrate on the absolute value loss function L(a, b) = |a − b|, thus providing a
direct connection with the traditional heuristic approach of score functions. The resulting
unit score for each unit k in the original longitudinal case was given by

Sk =

{

1 if
∑Q

q=1 λ
∗
qM

(q)
kk ≤ 1,

0 if
∑Q

q=1 λ
∗
qM

(q)
kk > 1,

(1)
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where M
(q)
kk are so-called conditional measurement error moments playing the role of item

scores and λ∗q are Lagrange multipliers associated to the dual optimization problem [52]. The
error moments are given by

M
(q)
kk = Em

[

ωk ·
∣

∣

∣

(

y
(q,obs)
k − y

(q,0)
k

)∣

∣

∣

∣

∣

∣
Zcross
k

]

,

where m stands for the statistical model of the measurement error ǫ
(q)
k = y

(q,obs)
k − y

(q,0)
k , ωk

is the (design) sampling weight, and Zcross
k denotes the cross-sectional available information

about unit k.

It is important to notice that no heuristic choice of anticipated values ŷ
(q)
k , local and

global score functions s(·) and S(·), and threshold values tk is necessary. Everything arises
naturally from the choice of a statistical model and a loss function. This is purely statistical
language. So far, these are ideas already contained in [52].

We are currently working on a streamlined version of the longitudinal case adapted to
standard production conditions [53]:

• The unit score value (1) involves only linear global score functions. It is more or
less straightforward to generalize this approach to obtain arbitrary Minkowskian global
score functions [54]. See appendix A. Unit score values are then given by

S
(r)
k =

{

1 if
∑Q

q=1 λ
∗
qM

(q)r
kk ≤ 1,

0 if
∑Q

q=1 λ
∗
qM

(q)r
kk > 1,

(2)

where r = 1, 2, 3, . . . . Notice that r = 1 recovers the former case.

• We propose an alternative way to find the Lagrange multipliers (see appendix B). The
most controversial assumption in the original derivation in [50] is the stationarity of
the measurement error generation mechanism. In the original approach it is assumed
that measurement errors in each time period are indeed realizations of the same ran-
dom variable (the measurement error). This is too crude an assumption for realistic
applications and we have dropped it by solving an alternative associated optimization
problem. In appendix B we include the theoretical proposal which is currently un-
der analysis using actual survey data. Results will be published elsewhere when the
proposal will thoroughly be tested with survey data [53].

Nonetheless, in production we have proposed, analysed with actual survey data, made
an experience pilot with one concrete statistical operation, and implemented in standard
production conditions for other surveys an alternative approach not using optimization for
the longitudinal case [55, 56]. This alternative approach makes use of time series modelling
to produce a validation interval for each variable for each statistical unit, and for each time
period. It is computationally demanding but effective in the reduction of recontact rates (we
obtain up to one half of the original recontact rates and just using simple time series models
for predicting each value in our current experience).

In any case, the standard format decided to express these validation intervals, either
from score functions or time series modelling techniques, amounts to associating to each
statistical unit k (i) an object variable name VarNamek upon which to apply the edit, (ii)
a condition Ck(yk,xk) determining whether to apply or not the edit, (iii) the lower bound
bk of the validation interval, and (iv) the upper bound of the validation interval uk. For
example, the edit with VarNamek = Turnover, Ck = {ωk > ω̄}, and validation interval
Ik = [bk, uk] amounts to applying for each unit k to its object variable turnover the edit
by firstly checking if the sampling weight ωk is greater that a fixed amount ω̄ and then, in
the positive case, checking if the reported value yobsk lies within the interval Ik or not (thus
flagging the variable). This expression of edits allows us to make a standardized software
implementation independent of the nature of the variables, of the concrete computational
procedure, and of the statistical operation.
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5.1.2 The cross-sectional case

The cross-sectional case arises when object and auxiliary information about all measured
units concerning their reported values is available for the current time period in course. This
case reduces to the resolution of a combinatorial optimization problem [57, 52] whose solution
[58] provides the selection of units to be edited interactively:

[Pco (η,Ω)] max 1T r

s.t. rTM (q)r ≤ ηq, q = 1, 2, ..., Q,

r ∈ Ω ⊂ [0, 1]×n,

The selection of units will ultimately depend on how tight we decide to be with the pres-
ence of non-influential measurement errors in the estimates of each aggregate Y (q), i.e. on
the bounds ηq. These bounds can be chosen according to accepted a priori coefficient of
variations or as measures of errors relative to estimates in preceding periods.

Nonetheless, we argue that for the output editing field work it is better to have a priori-
tization of units rather than a selection of units [52]. Should a number of units be selected,
either the selection may be short and thus resources are underused, or the selection is too
large and resources are not enough. With a prioritization, resources can be more easily op-
timised.

In [52] an algorithm was proposed for the prioritization based on successive solutions
i = 0, 1, . . . , n of the combinatorial optimization problem Pco (ηi,Ωi) upon particular choices
of the bounds ηi. In [56] an argument was given for the equivalence between this prioritiza-
tion algorithm and the score function approach making use of the greedy algorithm to solve
Pco proposed in [58]. Here, in appendix C we prove this equivalence under any algorithm.

Therefore, we have been able to set a purely statistical non-heuristic basis for local score

functions s as measurement error (conditional) moments sk = Mkk = Em

[

ωk ·
∣

∣yobsk − y0k
∣

∣

∣

∣

∣
Zcross
k

]

for each variable y within a measurement error model m conditional on the available cross-
sectional information for that unit. Complementarily, we have also proved that a global score
function S amounts to choosing a prioritization of units according to a sequence of succes-
sively tighter bounds upon the allowed non-influential measurement errors in the aggregate
estimates.

Finally, the error momentsMkk are computed according to so-called observation-prediction
models [52]. For example, for continuous variables the observation-prediction model given
by

yobsk = y
(0)
k + ǫobsk y

(0)
k = ŷk + ǫpredk ,

where y
(0)
k are true values and ŷk are predicted values according to an auxiliary model m∗.

The model satisfies the following specifications:

1. ǫobsk = δobsk · ek;

2. ek ≃ Be(pk), where pk ∈ (0, 1);

3.
(

ǫpredk , δobsk

)

≃ N
(

0,
(

ν2
k ρkσkνk

ρkσkνk σ2
k

))

.

4. ǫpredk , δobsk , and ek are mutually independent of Zk.

5. ek is independent of ǫpredk and δobsk .
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Under these assumptions, the error moments are given in closed form by:

Mkk =

√

2

π
· ωk · ν

2
k · 1F1

(
−
1

2
;
1

2
;−

(

yobsk − ŷk
)2

2ν2k

)

· ζk
(

yobsk − ŷk
)

(3a)

|yobs
k

−ŷk|

νk
→∞

−−−−−−−−−→ ωk|y
obs
k − ŷk|, (3b)

where we have denoted

ζk (x) =
1

1 + 1−pk

pk

(

ν2
k

σ2
k
+ν2

k
+2ρkσkνk

)−1/2

exp
(

− 1
2

σ2
k
+2ρkσkνk

σ2
k
+ν2

k
+2ρkσkνk

x2
)

.

Notice that the usual heuristic local score function [36] given by (3b) is obtained in the
limit case where the prediction error is negligible. The predicted values ŷk are computed
and the model parameters νk, σk, ρk, pk are estimated using the historic set of raw and edited
values yobsk , yedk .

Notice that this model is not the only option which can be used, although it is very
general. In section 5.4 we explore a theoretical proposal of an observation-prediction model
for a binary variable.

5.2 Software implementation8

As stated, a methodological proposal for statistical production is definitely incomplete if
computer science considerations about its implementation are not dealt with and even tested
and/or prototyped with real (not simulated) data.

To implement the preceding theoretical proposals the first requirement is to have access
to the historic set of raw and edited values of the statistical operation at stake. The larger
this set, the higher the number of theoretical (thus also practical) possibilities to compute
and estimate the involved quantities (ŷk, νk, σk, ρk, pk). For example, should we have at
least 36 months of data in a monthly survey we could possibly make use of ARIMA modelling
techniques to produce predictions and estimates of these quantities (see e.g. [56]).

Furthermore, if these techniques are to be applied in a standard way on many surveys at
a statistical office, then it is necessary that the information system of the statistical office
provides access to all these historic sets of raw and edited data, preferentially in a standard
format.

This was not the case of Statistics Spain and a repository of files with this content was
immediately put in place. The original proposal currently used in production was made by
J.M. Bercebal. The repository is essentially made up of different files: one per reference time
period and editing degree (raw, input-edited, completely edited) and one per survey contain-
ing a dictionary of data (variable name, type, length, role in the repository, description). All
file names are standardised.

All data files are given a key-value pair structure [59] in which the key is compound of the
values of different qualifiers (statistical units ID variables, statistical variable geographical
qualifiers, . . . ). Every variable composing this key is recorded in its corresponding column
in the data file, so that each file contains as many columns as the total number of variables

8As of uploading this work to the web, the actual data model implemented has evolved to a more efficient
version according to joint work with S. Saldaña, E. Esteban, J.M. Bercebal and M.R. Dı́az-Santos. Details
will be published elsewhere.
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composing the key and another column for the values.

This structure is very adequate for querying and processing data because it is very close
to Codd’s 3rd normal form [60]. However, when storing a large number of both microdata
and paradata, this proposal needs a step further to prevent files from growing in their number
of columns thus betraying the original philosophy of the key-value pair structure. We have
recently made the following proposal by taking advantage of the dictionary of data. We
propose to compose the key under the syntactic rule roughly expressed by

V arName : [V arNameV alue] [QualName1] : [QualName1V alue] . . . [QualNameN ] : [QualNameNV alue],
(4)

where as many N qualifiers as necessary are to be included independently for each variable.

Now only two columns are necessary for each data file: one for the compound key and
one for the data value. The dictionary of data allows us to build a lexer [61] to go from the
alphanumeric compound key expressed by (4) to the column-based compound key suitable
for processing and querying.

This proposal has been implemented by designing S4 classes in R according to the class
diagram in figure 2. Their attributes and methods are depicted in figure 8 in appendix D. The
coding of these classes has been carried out by E. Esteban, S. Saldaña, P. Garćıa-Segador,
and the present author in the form of R packages which are publicly available at [62–64].

Figure 2: UML class diagram for the data model implementing in R the repository key-value
pair structure.

We do not proceed to discuss the many details and design decisions behind this imple-
mentation (like the choice of data.table [65] as the basic class, the design of getters and
setters, etc.), which will be thoroughly discussed elsewhere. Notice that the data model
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depicted in figure 2 is valid for any statistical operation. Nonetheless we want to underline
again the combination of computer science and statistical skills as a necessary ingredient in
the design and development of an industrialised official statistical production system: are
these classes (or a generalization thereof independent of any language) to be designed by
traditional computer scientists or by traditional statisticians?

A thoughtful view of the interrelation (see figure 3) between business process model
(BPM) and information model (IM) standards [2] invites us to think of the design of an
official statistical production system as a formidable exercise of object-oriented analysis and
design [66]. The argument can be posed graphically. Redraw figure 3 as in figure 4.

Is this but a sequence of objects (i.e. attributes + methods)? Is it not a natural invitation
to design the statistical production process under OOA/D principles?

Input
- Any GSIM Information

Object(s)
(e.g. Data Set, Variable)
- Process parameters

GSBPM
Sub-process

Output
- Transformed (or new)

GSIM Information
Object(s)

- Process metrics

Figure 3: GSBPM and GSIM interrelation.

The traditional academic background of statisticians embrace neither these techniques
nor associated modelling languages such as UML [67] or BPMN [68]. Nor does the tradi-
tional academic background of computer scientists embrace statistical techniques for official
statistical production. The design of an efficient statistical production process must arise as
a combination of both.

GSIM
Object

GSBPM
Sub-process

GSIM
Object

GSBPM
Sub-process

GSIM
Object

GSBPM
Sub-process

Figure 4: GSBPM and GSIM interrelation as an object.

Once an IT architecture for the repository was put in place (see figure 8 in appendix D
for details), the next step already in course is to design prototype S4 classes9 for the imple-
mentation of the former selective editing techniques independently both of the observation-
prediction model for measurement errors (hence for both qualitative, quantitative, and semi-
continuous variables) and of the time series methods to compute validation intervals. This

9As a matter of fact, they are already in production; we are currently streamlining these classes.
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will hopefully allow us to make use of R packages already developed in the field of survey data
editing [69, 70]. Notice even further the high relevance of the proposed combination of statis-
tics and computer science to efficiently integrate both the statistical and computer-science
aspects of this implementation.

5.3 Statistical data editing workflow

An example where the unified combination of statistics and computer science skills is clearly
visible is the organization of the workflow within an editing and imputation strategy. The
original EDIMBUS strategy [8] for business surveys is depicted in figure 5. More elaborated
variants of this idea can be found in [6].

Raw Data

Initial E&I

Infl.

errors?

Interactive E&I Automatic E&I

Macro E&I

Susp.

Aggr.?

Final Data

yes

no

no

yes

Figure 5: EDIMBUS strategy workflow [8].

We have translated this diagram into a UML sequence diagram explicitly tackling some
business process design issues. Our proposal is represented in figure 6.

The key novelties are schematically:

• The strategy is expressed in terms of (reusable) production functions [72] understood as
precise formulations of sequenced production steps possibly needing input parameters
(despite the notation, not to be confused with mathematical functions).

• The phase of editing during data collection is explicitly included in the strategy (func-
tion EditColl).

• The distinction between functions applied upon single statistical units or upon the
whole sample of statistical units is made explicit through the use of fork and join
diagram elements.

We do not want to discuss methodological issues and notational details of this diagram
(see [71]). Instead we want to underline the benefits from integrating statistical and com-
puter science knowledge. It is clear that both diagrams 5 and 6 are clearly motivated from
the statistical business process knowledge. A modelling language like UML or any other
alternative can be simply viewed as an extra point of rigour in this sense.
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Raw sample

Edited sample

SelEdit(ncol,n
(n)
cyc,ncyc)

EditColl(ncol, n
(n)
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UnitSelection

(ncol, n
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InterEI(ncol, n
(n)
cyc) AutoEI(ncol, n

(n)
cyc)

UnitSelection

(ncol, n
(n)
cyc)

.

.

.

SelEdit(ncol,n
(2)
cyc,ncyc)

SelEdit(ncol,n
(1)
cyc,ncyc)

Validation

not selected

not selectedselected

Not validated

Validated

selected

Figure 6: Extended EDIMBUS strategy workflow [71].

However we find it more interesting to call official statisticians’ attention upon the fact
that in the effort to express a business process in a rigorous standard modelling language like
UML or BPMN or any other, the language elements themselves force us to think of many
details of the process. This is a clear benefit from the usage of these computer science tools.

By the way, in the same reasoning line expressed regarding the construction of class
diagrams, are these sequence diagrams to be designed by traditional computer scientists or
by traditional statisticians? Notice that, against that misunderstood reduction of computer
science to a matter of coding, no single line of computer code is written when designing these
diagrams. Also, no computer scientist without methodological knowledge about the business
process can design them.

5.4 An observation-prediction model for a binary variable

The final illustration regarding the modernisation of the editing phase of official statistical
production comes from putting together again both computer science and statistical tools to
define a variant of the UnitSelection function in diagram 6 when the variables are qualita-
tive.

The argument reads as follows. Once the editing workflow has been formalized and stan-
dardized using the preceding computer science modelling tools, if the statistical content of
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the production functions in the strategy can be extended to embrace not only quantitative
but also qualitative and semicontinuous variables, the strategy will be of wider application
under the same structure.

Let us concentrate on binary variables y(q) ∈ {0, 1}, q = 1, . . . , Q. The longitudinal case
is meaningless in these conditions. Thus we will concentrate on the cross-sectional case. The
combinatorial optimization problem is still Pco(η,Ω), where now

M (q) = diag
(
ωk · Em

[∣∣∣y(q,obs)k − y
(q,0)
k

∣∣∣
∣∣Zcross

k

])
.

Therefore, the key point is the computation of the conditional moments

Em

[∣∣∣y(q,obs)k − y
(q,0)
k

∣∣∣
∣∣Zcross

k

]

under an adequate observation-prediction model. Emulating the usual manual editing tasks,

as available information Zcross
k , apart from the set of reported values y

(q,obs)
k , we assume the

existence of continuous variables xk for each statistical unit k. The observation-prediction
model for the binary variables yobsk , y0k (we drop out the superscript (q) for ease of notation)
assumes the following probabilities:

P
(

y0k = 1|x
)

= πk(x), P
(

y0k = 0|x
)

= 1− πk(x),

P
(

yobsk = 1|y0k = 0,x
)

= qk(x), P
(

yobsk = 0|y0k = 0,x
)

= 1− qk(x),

P
(

yobsk = 1|y0k = 1,x
)

= 1− pk(x), P
(

yobsk = 0|y0k = 1,x
)

= pk(x),

where the probabilities πk(x), pk(x), qk(x) ∈ [0, 1] for all k ∈ s play the same role as the
parameters pk, νk, ŷk, νk, ρk in the continuous variable observation-prediction model.

By Bayes’ theorem we can write:

P
(

y0k = 1|yobsk = 0,x
)

= Pk(x), P
(

y0k = 0|yobsk = 0,x
)

= 1− Pk(x),

P
(

y0k = 1|yobsk = 1,x
)

= 1−Qk(x), P
(

y0k = 0|yobsk = 1,x
)

= Qk(x),

where

Pk(x) =
πk(x)pk(x)

πk(x)pk(x) + (1− πk(x))(1 − qk(x)))
,

Qk(x) =
qk(x)(1 − πk(x))

qk(x)(1 − πk(x)) + (1− pk(x))πk(x)
.

After elementary manipulations we have:

Mkk = ωk · Em

[∣

∣yobsk − y0k
∣

∣

∣

∣yobsk ,x
]

=







ωk · Pk(x) if yobsk = 0,

ωk ·Qk(x) if yobsk = 1,

The model probabilities πk, pk, qk can be estimated by logistic models with x as exogenous
variables. For example, let us partition the population into domains Ud ⊂ U in which the
units show a similar error generation mechanism. Then the error probabilities πk(x), pk(x),
and qk(x) can be estimated by formulating logistic models

logit (π) = αd0 +αT
d x+ ǫd,

logit (p) = βd0 + βT
d x+ ǫ̃d,

logit (q) = γd0 + γT
d x+ ˜̃ǫd,
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within each domain Ud so that p̂k(x) = p̂d(xk) and q̂k(x) = q̂d(xk) for all k ∈ Ud.

Thus, following the same general arguments as in the quantitative variables case, we may
view these error moments as item scores for each binary variable y(q):

s
(q)
k = s

(
y
(q,obs)
k ;πk(x), pk(x), qk(x)

)
=





ωk · P
(q)
k (x) if y

(q,obs)
k = 0,

ωk ·Q
(q)
k (x) if y

(q,obs)
k = 1.

(6)

Standardization is thus achieved both in the methodological and in the production im-
plementation realms.

This approach to selectively edit a survey with categorical variables is currently under
exploration. It needs a deep search of adequate models for the parameter probabilities in
terms of available continuous variables and thorough testing with data from a real survey.
See appendix E for a simple exploration model with data from the Spanish National Health
Survey.

6 New sources of information for official statistics

Radermacher, in the opening address of the Conference NTTS 2015 [73], portrayed in a
glimpse a history of official statistics in four periods:

• XIX century.- Official statistics production feeds from censuses and complete enu-
meration of data directly from the populations.

• 1900-1970.- Sampling is introduced, macroeconomic statistics is born, and deepening
and widening of survey methodology is produced along different lines. Data come
directly from selected statistical units.

• 1970-2010.- Information and communication technologies are introduced and become
widespread. Methodologies adapt to these new technologies. Administrative registers
begin to be used as source of information. Data protection and privacy begins to be
an issue. Data still come directly from selected statistical units, either in electronic or
physical collection modes.

• 2010-onwards.- Data are generated from machine to machine interaction. Data deluge
increases exponentially. Methodologies need further adjustment.

Dillman [74] already predicted somehow the decreasing availability of data directly from
statistical units due to the widespread generalization of self-management of most social and
human activities (self-managed luggage check-in at airports, automatic public transport tick-
ets dispensers, . . . ). All these data are increasingly stored and processed by machines and
are finally culminating into huge amount of data everywhere generated, stored, processed,
and analyzed solely by machines. It is the era of Big Data.

However, in the spirit of Dillman’s analysis, it is not size that matters. The key point is
the digital footprint of human activity [75]. In this sense, both administrative registers and
Big Data can be understood under the same umbrella: it is the trace of human activity in
an information system, namely the information system of the State Public Administration
and of corporations, respectively.

Both types of information systems pose different problems for their use in official statis-
tics. In the case of administrative registers, data access is not really a major issue inasmuch
as an agreement among different parts of the Public Administration is enough. However, for
Big Data, digital data are mostly owned by private corporations. Data extraction and deliv-
ery in this case cannot be considered the same as filling a traditional questionnaire, however
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complex it may be, either physical or electronic.

Regarding statistical production methodology, in both cases adjustments to the source of
information are needed. In the case of administrative registers, variables are not designed
and collected for statistical purposes. In the case of Big Data, this is also so, but in addition
a strong change in the statistical methodology is entailed: design-based inference apparently
will not be enough and model-based techniques will be ineludibly necessary, especially those
Bayesian-based machine learning techniques [76].

All in all, this new scenario poses a high risk for official statistics. A public-private part-
nership [77] is in due order for public statistical agencies to have access to that huge amount
of information. Shouldn’t these agencies have access to this information, this will ineludibly
be statistically exploited by someone else (the corporations themselves?) and the agencies
may become gradually irrelevant.

All this digital information, either huge, large, big, or small, will be impossible to exploit
unless a unified combination of statistics and computer science rules the production.

7 Some conclusions

We argue that the modernisation and industrialisation of official statistical production re-
quires a unified combination of statistics and computer science in its very principles. To
defend this idea we have detailed some proposals, many of them already applied in produc-
tion in some Spanish statistical operations, where this combination is clearly shown.

The industrialisation of official statistical production needs a modern system of meta-
data, in particular of process metadata. The standard for these metadata at Statistics Spain
takes GSBPM level-2 production subprocesses as a starting point and develops a third level
in which production tasks are described according to their input(s), output(s), throughput,
documentation, tools, and responsible unit(s). This has been accomplished following com-
puter system design principles such as functional modularity, hierarchy, and layering. Among
other things, these make us establish natural borders between tasks. Thus, under this view,
only a combination of computer science and statistical principles will allow us to design an
efficient statistical process in which complexity is properly dealt with.

In our proposal to modernise the statistical data editing phase, we have combined both
skills in different ways. Proceeding top-down, the workflow of production tasks has been
expressed using a UML sequence diagram, which makes us think of and give details not
contained in more informal diagrams. One of these new elements are production functions,
which if properly designed according to functional modularity principles, can be substituted
for streamlined versions without affecting the rest of the editing and imputation strategy.

The most prominent example of such a functionally modular production function is Unit-

Selection, which selects each statistical unit for interactive editing or automatic editing
(due to the presence or absence of influential errors). We have provided a non-heuristic
statistical basis for the use of score functions, which arises as the application of so-called
observation-prediction statistical models. The use of rigorous statistical language allows to
define new UnitSelection functions applicable to binary, categorical, and semicontinuous
variables provided that we model the measurement errors.

All this statistical methodology demands an adequate IT architecture to standardize its
use in actual production conditions. Firstly, since model parameters are estimated mak-
ing use of historical sets of raw and edited data values, we need access to these data upon
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which these methodological proposals are to be applied. We have programmed a light-weight
object-oriented implementation of a versatile key-value pair structure for a repository of files
using a high-level language such as R. This has allowed us to go from design to production
in a very short period of time. Everything is reduced to feeding this repository.

Once the access to historic double sets of raw and edited data values is solved, the im-
plementation of the statistical methodology for selecting units with influential errors is un-
dertaken by designing new classes valid for any statistical operation under consideration.
An initial proposal is already in production with good results (see figure 7). Currently we
are working in streamlined versions allowing us to also deal with the cases of categorical
and semicontinuous variables. Notice that this requires our defended combination and will
hopefully drive us to a standardization of this production phase at a larger scale.
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Figure 7: Recontact rates in the Spanish Retail Trade Survey and the Sector Service Indica-
tors Survey after applying the optimization approach to selective editing. For the Industrial
Turnover and New Orders Received Surveys the recontact rate was also roughly halved on
average from its original 55% after applying this proposal starting in January, 2013 (not
included in the figure). The initial anomalies in the figure reflect the difficulties met in the
implementation during the first months. Special thanks to E. Sánchez-Núñez and her teams
and staff at Statistics Spain’s provincial delegations for their patience and perseverance in
the implementation process (parameter fine-tuning, bug fixing, migration from SAS to R,
. . . ).

However as key as we find this combination of computer science and statistics to modernise
official statistical production, we do not claim that this combination per se will automati-
cally industrialise a statistical office. Nor do we claim that this unified combination in the
professional profile of new young official statisticians will do so.

The process of modernisation and industrialisation must be undergone in current pro-
duction conditions, whatever they are, and implemented by those (often overloaded) actors
whose professional profiles needs this adjustment. Skills will surely be faster acquired pro-
vided suitable training programmes are put in place. Moreover, this modernisation must
be accomplished without affecting the release of official statistical products mostly ruled by
legal regulations. This is an extraordinary challenge for the top management thus requiring
a detailed and carefully designed action plan.
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A Derivation of Minkowskian global score functions

To derive the generalized stochastic optimization problem, first we notice that for loss func-

tions L(r)(a, b) = |a− b|r, the quantities E
1
r
pm

[
L(r)

(
Ŷ (∗,q)(R), Y (q)

) ∣∣Z
]
satisfy the triangle

inequality so that E
1
r
m

[
L(r)

(
Ŷ (∗,q)(R), Ŷ (q,0)

) ∣∣Z
]
≤ ηq also entails the upper-bounding of

E
1
r
pm

[
L(r)

(
Ŷ (∗,q)(R), Y (q)

) ∣∣Z
]
provided that E

1
r
pm

[
L(r)

(
Ŷ (q,0), Y (q)

) ∣∣∣Z
]
is also bounded

(by the sampling design).

For the generalized restrictions we can write

Em

[
L(r)

(
Ŷ (∗,q)(R), Ŷ (q,0)

) ∣∣Z
]
≤ Em

[
∑

k∈s

Rk

∣∣∣ωksǫ
(q)
k

∣∣∣
r ∣∣Z

]

= Em

[
RTdiag

(
∆(q)r

) ∣∣Z
]
,

where ǫ
(q)
k = y

(q)
k − y

(q,0)
k denotes the measurement error and ∆(q) stands for the diagonal

matrix with entries |ωksǫ
(q)
k |.

Besides, the longitudinal case is to be applied as a form of input editing, so that no cross-
sectional information will be available when resolving about unit k, except for the information
regarding unit k itself. Thus we can write Rk ∈ S(Z

cross
k ) to indicate that the selection of

unit k is a function of the available information (cross-sectional included, i.e. the values in
the questionnaire). Then we can write

Em

[
RTdiag

(
∆(q)r

) ∣∣Z
]

= Em

[
Em

[
RTdiag

(
∆(q)r

) ∣∣Zcross
] ∣∣Z

]

= Em

[
RTdiag

(
M (q,r)

) ∣∣Z
]
,

where M (q,r) = Em

[
∆(q)r

∣∣∣Zcross
k

]
. Now, to impose an upper bound on this conditional

expectation for arbitrary values of r is too restrictive. Thus we will focus on the looser
expression (by means of Lyapunov’s inequality):

Epm

[
RTdiag

(
M (q,1)r

) ∣∣Z
]
≤ Epm

[
RTdiag

(
M (q,r)

) ∣∣Z
]
.

The generalized stochastic optimization problem is given by:

[P
(r)
st ] max Em

[
1TR|Z

]

s.t. Em

[
RTdiag

(

M (q,1)r
) ∣

∣Z
]

≤ ηq, q = 1, 2, ..., Q,

Rk ∈ S(Z
cross
k ), k ∈ s.

The solution to this problem is mutatis mutandis similar to the original case (see eq. (2)):

Rk =

{

1 if
∑Q

q=1 λ
∗
qM

(q,1)r
kk ≤ 1,

0 if
∑Q

q=1 λ
∗
qM

(q,1)r
kk > 1,

where λ∗q are the optimal Lagrange multipliers of the associated dual problem [50].
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B Alternative theoretical proposal to find the Lagrange

multipliers

The original approach in [50] proceeds to convexify the stochastic optimization problem by
setting a general form for the selection strategy vector given by

Rk =

{
1 if ξk ≤ Qk,
0 otherwise,

where ξk are continuous uniform random variables U(0, 1) and Qk ∈ [0, 1] are continuous
random variables independent from ξk. The generalized stochastic optimization problem
reads then

[P
(r)
st ] max Em

[
1TQ|Z

]

s.t. Em

[
QTdiag

(

M (q,1)r
)
∣

∣Z
]

≤ ηq, q = 1, 2, ..., Q,

Qk ∈ S(Z
cross
k ), k ∈ s.

The solution to the generalized stochastic optimization problem P
(r)
st is reached using the

duality theorem (see e.g. [78]). Let the Lagrangian

L(r)(Q,λ) = Em

[

1TQ−

Q
∑

q=1

λq

(

QTdiag(M (q,1)r)− ηq

)

|Z

]

.

Let P̃
(r)
st (λ) denote the associated maximization problem

[P̃
(r)
st (λ)] maxL(r)(Q,λ)

Qk ∈ S(Z
cross
k ), k ∈ s.

Then Q(λ∗) is an optimal solution to problem P
(r)
st , when λ∗ are the optimal Lagrange

multipliers of the dual problem given by

[D(r)] minλ≥0 maxQk∈S(Zcross
k

) L
(r)(Q,λ)

Now problem D(r) is solved approximately in [50] by applying the sample average ap-
proximation and the principle of interchangeability. To support the former, stationarity in
the measurement error generation must be assumed. This allows us to view the loss matrices

M
(q,1)
t in each time period t as realizations of the same random variables. Thus they write

max
Qk∈S(Zcross

k
),k∈s

Em

[

1TQ−

Q
∑

q=1

λq

(

QTdiag(M (q,1)r)− ηq

)

|Z

]

≈

1

T

T
∑

t=1

max
qt∈[0,1]

[

1Tqt −

Q
∑

q=1

λq(q
T
t diag(M

(q,1)r
t )− ηq)

]

.

They solve this numerical optimization problem using standard maximization routines
[50]. An alternative approach to reach a solution to problem D(r) is to avoid the assumption

about stationarity and to use predictions for the error moments M (q)r, denoted by M̂ (q)r.
Thus we propose to write
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max
Qk∈S(Zcross

k
),k∈s
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|Z

]
=
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k
),k∈s
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[
QT |Z
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)
+

Q∑

q=1

λqEm

[
QTdiag

(
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)
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]]

. (7)

Now, by the Cauchy-Schwarz inequality we can write
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Instead of problem (7) we shall concentrate upon the looser problem given by

max
Qk∈S(Zcross

k
),k∈s

[
1T

Em [Q|Z]−

Q∑

q=1

λq

(
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]
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(
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M

(q,1)r
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(8)

Notice that the more precise the predictions M̂ (q,1)r, the lower the conditional standard

deviations σm

[
M

(q,1)r
kk |Z

]
, hence the closer problem (8) is to problem (7). Regretfully, we

do not know the distribution of M (q,1)r, thus nor do we know σm

[
M

(q,1)r
kk |Z

]
. So, instead of

problem (8), we will estimate each σm and concentrate upon the problem given by

max
Qk∈S(Zcross

k
),k∈s

[
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,

where we denote η̃
(r)
q = ηq +

∑
k∈s σ̂m

[
M

(q,1)r
kk |Z

]
.

Now this maximization problem has the trivial solution q(r) = q(r)(λ, M̂(·,1)) given by

q
(r)
k (λ, M̂(·,1)) =





1 if
∑Q

q=1 λq
̂
M

(q,1)r
kk ≤ 1,

0 if
∑Q

q=1 λq
̂
M

(q,1)r
kk > 1.

Let

L(r)(λ) =
∑

k∈s

q
(r)
k (λ, M̂(·,1)) +

Q∑

q=1

λq η̃
(r)
q −

Q∑

q=1

∑

k∈s

λq
̂
M

(q,1)r
kk q

(r)
k (λ, M̂(·,1)),

then the optimal Lagrange multipliers λ∗ will be given by the solution of the relaxed problem
expressed as minλ≥0 L

(r)(λ).

It can be proved [53] that the function L(r) is continuous in {λ ≥ 0} but non-differentiable

in
⋃

k∈s H
(r)+
k , where H

(r)+
k denotes the intersection H

(r)+
k = H

(r)
k

⋂
{λ ≥ 0}, H

(r)
k being
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the hyperplane H
(r)
k = {λ ∈ RQ :

∑Q
q=1 λq

̂
M

(q,1)r
kk = 1}. Thus the objective function L(r) (λ)

is also continuous in {λ ≥ 0} and non-differentiable in
⋃T

t=1

⋃
k∈s H

(r)+
k . Furthermore, it

can also be proved that L(r) is coercive (see e.g. [79]). Thus, by Weierstrass’ theorem the
objective function is lower-bounded and attains its minimum in its domain of definition.

This suggests to use a direct search optimization method (see e.g. [80]), which does not
make use of derivatives to find the minimum. In particular, we are currently considering a
compass search method. Let {eq}q=1,...,Q denote the canonical basis in RQ and f = L(r).
The algorithm is depicted in Algorithm 1 below.

Algorithm 1 Compass search algorithm to find the minimum of L(r)

1: λ← λ0 ⊲ Initial guess solution
2: s← s0 ⊲ Initial step length
3: for all q=1,. . . ,Q do
4: λq ← λ+ s · eq
5: end for
6: λ

∗ ← argminq=1,...,Qf (λq)

7: if f(λ∗) < f(λ) and
∥∥λ∗ − λ

∥∥ > ǫ then ⊲ Stopping criterion
8: s← s/2
9: λ← λ∗

10: return to step 3
11: end if
12: return λ∗

The parameters of the algorithm are the initial guess solution λ0, the initial step length
s0, and the accepted tolerance ǫ. Details regarding their choice are discussed elsewhere [53].

It is important to underline that the evaluation of this approach will be done according
to the selection efficiency measure introduced in [52] and applied upon real survey data. Any
other numerical assessment, although necessary for rigour’s sake, must be subjected to the
final goal of efficiently selecting units with influential errors.

C The unit prioritization algorithm and its equivalence

with the score function approach

Firstly, we sketch the prioritization algorithm. Then we will prove the equivalence with the
traditional score function approach.

Algorithm 2 Unit prioritization from a sequence of combinatorial optimization problems

1: Ω← Ω(0) ≡ {1, . . . , n} ⊲ Initial empty selection
2: Initialize s ∈ N×n

3: for i=1,. . . ,n do

4: ηq ← η
(i)
q so that r(i) = solve

(

Pco

(

η(i),Ω(i−1)
))

satisfies
∑

k∈s rk = i

5: Ω(i) ← Ω(i−1) − {i}

6: si ← k ∈ [1, n] : r
(i)
k 6= r

(i−1)
k

7: return s

8: end for

The main idea behind the prioritization of units using the combinatorial optimization
problem Pco (η,Ω) is the construction of an adequate sequence of upper bounds η. We start
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by setting Ω(0) = {1, . . . , n}. Then we reduce the upper bounds to η(1) so that the solution
r(1) to the new problem Pco(η

(1),Ω(0)) is rk = 1 for all k, except for one rk1 = 0. Unit k1
has been selected. We set Ω(2) = Ω(1)−{k1} and again we reduce the upper bounds to η(2).
This procedure is repeated n times. The prioritization is given by the sequence of indices
s = (k1, k2, . . . , kn) indicating which new unit has been selected in each iteration.

Now, conjugating both this algorithmwith an appropriate sequence of bounds {η(i)}i=1,...,n

we can justify the traditional role of global score functions.

Proposition C.1. Let

η(i+1)
q =

∑

k∈Ω(i)

M
(q)r
kk − max

k∈Ω(i)
S
(
M

(1)r
kk , . . . ,M

(Q)r
kk

)
,

where the global score function S is such that

ki+1 = argmaxk∈Ω(i)S
(
M

(1)r
kk , . . . ,M

(Q)r
kk

)

in each resolution i + 1 of the problem Pco

(

η(i+1),Ω(i)
)

. Then the prioritization of units is

given by the descending order of the values of S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

.

Proof. Note that in iteration i + 1 of the prioritization algorithm the restrictions of the
problem read

r(i+1)TM(q)rr(i+1) − η(i+1)
q ≤ 0 q = 1, . . . , Q. (9)

Now to solve the problem in this iteration we substitute

η(i+1)
q =

∑

k∈Ω(i)

M
(q)r
kk − max

k∈Ω(i)
S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

into equation (9) to arrive at

r(i+1)TM(q)rr(i+1) − r(i)TM(q)r(i) + max
k∈Ω(i)

S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

≤ 0, q = 1, . . . , Q. (10)

Now the solution r(i+1) found with the recipe

ki+1 = argmaxk∈Ω(i)S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

is precisely r(i) with rki+1 = 0, since equation (10) reduces to

M
(q)r
ki+1ki+1

≥ max
k∈Ω(i)

S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

for all q. Thus the new selected unit ki+1 makes r(i+1) satisfy every restriction.

Finally the ordering given by ki+1 = argmaxk∈Ω(i)S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

, Ω(i+1) = Ω(i)−

{ki} is exactly the decreasing order of the values S
(

M
(1)r
kk , . . . ,M

(Q)r
kk

)

.

To sum up, if we think of M
(q)
kk as local scores and of S as a global score function, we are

reproducing the traditional approach. This entails the following interpretation of global score
functions: they translate our priority about the gradual accuracy of the different aggregate
estimates Ŷ (q) upon editing execution into a unit prioritization.

D S4 classes and methods for the repository data model

The S4 classes and methods in language R implementing the key-value pair structure for the
repository is detailed in the following collection of class diagrams (see figure 8).
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Figure 8: UML class diagrams with their attributes and methods.

E A simple observation-prediction model for a binary

variable

We include an illustrative example of our currently on-going research on the optimization
approach to selective editing of binary variables. We give details of an initial exploratory
example using data from the Spanish National Health Survey10.

10We thank M.R. González-Garćıa for providing raw and edited data sets and insight into the meaning of
the variables.
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We will focus on a binary variable indicating membership to a domain Ud ⊂ U . In
particular, we concentrate on so-called social class membership, where by “social class” it
is understood a grouping of CNO-1111 codes. We define y ∈ {0, 1} as the binary variable
indicating whether a person belongs to social class 1 or not. Social class 1 comprises a priori
those occupations12 with higher expected salaries.

A prioritization of units for the editing field work according to the measurement error
of the binary variable y is impossible using traditional item score functions s(·) (as e.g.
s(yk;ωk) = ωk|y

obs
k − ŷk|, especially useless in self-weighting samples). In practice, this kind

of variable is edited by its semantic content and expert judgment. In the case of “social class
1” editing clerks explore the relationship of this variable with, among others, the variable
“salary” included in the questionnaire searching for inconsistencies. Highest salaries are ex-
pected when y = 1. Editing is completely interactive.

Using a double set of raw and edited values we train the logistic models (5a), (5a),
(5a), where x = (x1, x2)

T are the ratio between reported salary and number of consump-
tion units in the household x1 = Salary

ConsumpUnits and this ratio weighted by the sampling

weight x2 = SampWeight · Salary
ConsumpUnits . The parameters πk, pk, qk are then estimated by

π̂k(x) = π̂(xk), p̂k(x) = p̂(xk), q̂k(x) = q̂(xk), where the predicted values π̂, p̂, q̂ are com-
puted according to the trained models and the values xk are taken from the test data set.
To be precise, in order to prevent high nonresponse rates when asking the detailed salary, a
censored variable in terms of intervals is asked. Therefore, the center of this censored interval
is used as Salary in the preceding variables x1, x2. Thus, its discriminating power is rather
limited indeed since only 10 intervals are queried about.

The item scores sk for variable y are then given by (6) with πk(x) = π̂(xk), pk(x) = p̂(xk),
qk(x) = q̂(xk). We produce a prioritization of units according to these values sk and inves-
tigate its quality by using the editing efficiency measure introduced in [52] (see figure 9).

Despite the high simplicity of the models and the low discriminating power of the avail-
able continuous variables x1, x2, the prioritization is more efficient than a random sorting of
the units. Although this is a simple exploratory example, it is promising since it encourages
us to explore more sophisticated models closer to more realistic conditions.

The current lines of research are:

• As an initial exploration, we use half of the total double set as training set and the other
half as test set (halves chosen randomly). Our plan is to reproduce actual production
conditions by dividing the data set according to the progression of data collection, use
progressively these as training sets and the on-going new data set chunk (usually 2 or
3 weeks) as test set.

• Binary variables are to be generalized to categorical variables, so multinomial logistic
models instead of binomial logistic models are to be explored.

• A systematic analysis of all available continuous variables as exogeneous variables in
the models is to be accomplished.

• Editing both continuous and categorical variables in the same strategy is to be explored.

11CNO-11 stands for Clasificación Nacional de Ocupaciones 2011 [81], which is the Spanish version of the
International Standard Classification of Occupations (ISCO-08) [82].

12CNO-11 codes: 111, 112, 121, 131, 132, 211, 213, 214, 215, 221, 223, 241, 242, 243, 244, 245, 251, 259,
261, 262, 265, 271, 281, 282, 291, 292, 283.
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Figure 9: Editing efficiency measure for prioritizing units to edit the binary variable “Social
Class 1”.
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