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Abstract

We formulate selective editing as a combinatorial optimization problem whose so-

lution establishes which sampled units contain influential errors and thus must un-

dergo interactive editing within a generic editing and imputation strategy. This

optimization problem arises naturally from considerations on editing resources sav-

ings and estimates accuracy control. Cross-sectional auxiliary information is taken

into account through linear mixed models assisting the construction of the problem’s

feasibility region. We provide a general algorithm for the univariate version of this

problem, i.e. for editing one single variable. By applying this proposal to each ques-

tionnaire variable we illustrate its use upon the Spanish industrial turnover index

and industrial new orders received index surveys. A reduction of interactive editing

with a controllably increase of estimates error is observed.

1 Introduction

“If I am to select one issue [on calibration], let me focus on the concept of auxiliary
information. It is the pivotal concept [. . . ]” (Särndal, 2007). This prominent role of aux-
iliary information in survey sampling is traditional both in the design and the estimation
phases. Long-established sampling designs (Deming, 1950; Cochran, 1977; Särndal et al.,
1992) constitute indeed different ways to incorporate this information and even more re-
cent proposals (Deville and Tillé, 2005; Tillé, 2006) also pursue this view. The calibration
approach (see e.g. Särndal (2007) and multiple references therein) is perhaps the most
outstanding example. But these are not the only stages of a survey sampling estimation
process where auxiliary information is clearly useful. Small area estimation (Rao, 2003)
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is another clear example, to name just one more.

On the other hand, somehow implicit above is the fact that the production of survey
sampling estimates, and official statistics in general, is a complex integration of processes,
most of them of an eminent statistical nature. An excellent description of this view is
offered by the so-called Generic Statistical Business Process Model (GSBPM hereafter)
described in UNECE (2010), where 53 processes are identified. Among these one can
clearly find data editing and imputation (E&I henceforth) stages usually carried out in
practice jointly.

In the last two decades different methods of statistical data editing have been clearly
recognized (de Waal, 2008, 2009), which have indeed been proposed to be integrated in
a whole so-called E&I strategy (EDIMBUS, 2007). Here we will concentrate upon se-
lective editing (Hidiroglou and Berthelot, 1986; Latouche and Berthelot, 1992; Lawrence
and McDavitt, 1994; Lawrence and McKenzie, 2000; Hoogland, 2002; Hedlin, 2003, 2008;
Hoogland and Smit, 2008) whose goal is to identify those sampled units which contain in-
fluential errors with noticeable effects on the estimated aggregates. By and large selective
editing runs through four stages (Lawrence and McKenzie, 2000), namely (i) the choice
of an expected amended value for a questionnaire variable (a value more likely than the
actual reported value according to a chosen editing model), (ii) the determination of local
scores, (iii) the combination of these to produce a respondent global score, and (iv) the
choice of cut-off thresholds (to establish a limit under which sampled units will not enter
the critical stream of units to be further queried). This clearly involves many decisions by
the survey conductor.

Under the general philosophy portrayed above, we propose an approach to the selec-
tive editing stage of the E&I phase which seeks to exploit auxiliary information under a
reduced set of assumptions by the statistician conducting the survey. Here the selective
editing stage is always considered as a subprocess integrated in the whole E&I strategy.
No score function is needed and the identification of influential units is performed accord-
ing to their a priori effects on the accuracy of the estimation of aggregates, always aiming
at reducing the amount of editing work (hence of editing costs). As it will be discussed
below, selective editing is thus posed as an optimization problem minimizing editing costs
subject to estimates accuracy being under control. Previous work in this direction has
already been carried out in Arbués et al. (2009, 2010), where auxiliary information from
preceding time periods for each sampled unit has been successfully exploited in the editing
task.

The work is organized as follows. In section 2 we pose the general assumptions under
which this formulation develops. In section 3 we formulate selective editing as a com-
binatorial optimization problem. In section 4 we explain how cross-sectional auxiliary
information shaping the feasibility region of this problem is taken into account through
linear mixed models and in section 5 an algorithm to solve it is provided. In section 6
we apply our proposal to the Spanish industrial turnover index and industrial new orders
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received index surveys. In section 7 we discuss the work both theoretically and in the light
of the preceding application. Finally in section 8 we collect some concluding remarks.

2 General assumptions

Before proceeding to formulate selective editing as an optimization problem, we must make
clear the general assumptions under which this formulation is drawn. Firstly, the concept
of auxiliary information is extremely wide (even vague) and some concretion is desirable.
For our purposes we shall conceive auxiliary information as a three-dimensional concept
fully deploying its utility when all these three dimensions are jointly exploited. These
are (i) the longitudinal, (ii) the cross-sectional and (iii) the multivariate information. By
longitudinal we mean the value of variables for each unit in previous time periods. This
implicitly assumes that the survey is periodical. By cross-sectional we refer to the informa-
tion stemming out from the whole sample at the current period. Finally, by multivariate
we signify the information arising from the multidimensional character of the survey (usu-
ally several variables are investigated). In previous works (Arbués et al., 2009, 2010)
selective editing was formulated as a stochastic optimization problem focusing upon the
longitudinal dimension of the auxiliary information. In the present work we concentrate
complementarily upon the cross-sectional one. Our final goal is to find an integration of
all dimensions in the same E&I strategy.

Secondly, we adopt the generic E&I strategy outlined in EDIMBUS (2007), which is
represented in figure 1, so that our selective editing approach is thought to identify both
a critical stream of units with data to be edited interactively and a noncritical stream to
be edited automatically. We make clear that we focus only on the error detection stage of
the E&I process. No imputation or error treatment issues whatsoever are tackled with in
this work.

In the third place, in consonance with the quality view of selective editing (Biemer
and Lyberg, 2003) (see also Granquist and Kovar (1997); Granquist (1997)), our formula-
tion is based upon the goal of minimizing data editing costs keeping the survey estimates

accuracy under control. This will allow us to reallocate resources from pure data cleaning
to identifying and collecting information about error causes in order to improve survey
quality. Thus we adhere to the increasingly extended view of building quality into every
stage of survey production.

Finally, we focus on measurement errors, which are dealt with in the usual form (Lessler
and Kalsbeek, 1992; Särndal et al., 1992): the observed value of a variable y by respondent
k, denoted by yobs

k , will be written as

yobs
k = yk + ǫk, (1)

where yk stands for the true value and ǫk denotes the individual error of unit k. In rigour

we should denote instead ǫ
(y)
k (or something similar) to account for the variable which the

3



Raw Data

Initial E&I

Influential

errors?

Automatic

E&I

Interactive
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Figure 1: Generic E&I strategy for economic surveys taken from EDIMBUS (2007). The
selective editing phase corresponds to the detection of influential errors.

error is affecting to, but since we will not deal with multivariate questions, we keep our
notation as simple as possible. To be exhaustive, we state the following remarks:

• As in existing approaches of selective editing, the variable y is quantitative. We
leave the analysis and adaptation of this formulation to qualitative variables for
future research.

• For the time being the true value yk is a fixed non-random value. As we shall see
below, we will promote yk to a random variable (in consonance with Arbués et al.
(2009, 2010)) in order to pave the way for model building tools.

• The concept of measurement error should be understood in the editing problem in
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a generalized way, i.e. as an observational error in the sense of Groves’ classification
of survey errors (Groves, 1989). Thus errors due to the interviewer, the respondent,
the measurement instrument and the data collection mode are considered.

• The error ǫk is a random variable. The random nature of the measurement error
in sample surveys can be subject to debate (Lessler and Kalsbeek, 1992), but here
it is stated in a pragmatic fashion, encompassing possible nonrandom situations as
degenerate random variables.

• In general, as we will discuss, scarcely necessary is the distribution of ǫk and always
unattainable. The first and second moments will generally suffice, in particular,
for the forthcoming formulation. This follows the spirit of the simple measurement
model (Särndal et al., 1992).

• The moments are allowed to depend on the particular sample selected for the survey.
That is, we will need the expected value Em[ǫk|s] = µks, the variance Vm[ǫk|s] = σ2

ks,
and covariance Cm[ǫk, ǫl|s] = σkls, where the subscript m refers to the chosen error
model and s stands for the selected sample. This implies that with a different sample
these moments may change.

• Auxiliary information is a key concept in our formulation, as in Arbués et al. (2009,
2010). With this purpose we denote by G the σ−algebra generated by all auxiliary
variables potentially pertinent to the determination of the model (1). In other words,
G represents all information available at the moment of carrying out the survey
which can be used to construct the error model1. Thus, the quantities of interest
will actually be Em[ǫk|s,G] = µks, Vm[ǫk|s,G] = σ2

ks, and Cm[ǫk, ǫl|s,G] = σkls.

3 Selective editing as a combinatorial optimization problem

To begin with, we define for each sampled unit k ∈ s a binary variable rks ∈ {0, 1} such
that

rks =

{
0 if unit k enters interactive editing,
1 if unit k does not enter interactive editing.

This counterintuitive assignment will be clear immediately below. Also, we allow rks

to be sample-dependent, so that we write more completely rks instead of simply rk. This
gives room for sampling variations and it is in consonance with the concept of influential
error, since an error in a unit may be influential in a given sample (and thus edited inter-
actively), but noninfluential in another.

Using rks we can readily define the (interactively) edited value of a variable y for each
unit k ∈ s as

yed
ks = yk + rksǫk.

1With the sole exception of the selected sample s.
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Note that yed
ks = yk when unit k is edited and yed

k = yobs
k otherwise. This reflects

the working assumption that editing drives us to the true value of the variable. It is a
strong hypothesis, but a fairly acceptable one. Not in vain interactive editing is the most
resource-demanding.

Once introduced yed
ks, one can readily distinguish three related estimators for, say, a

population total YU :

1. The true estimator Ŷ =
∑

k∈s ωksyk;

2. The unedited estimador Ŷ un =
∑

k∈s ωksy
obs
k = Ŷ +

∑
k∈s ωksǫk;

3. The edited estimator Ŷ ed(r) =
∑

k∈s ωksy
ed
k = Ŷ +

∑
k∈s ωksrksǫk,

where {ωks}k∈U are sampling weights, which can be sample-dependent2. We assume hence-
forth that Ŷ is unbiased or asymptotically unbiased. Now we resort to the mean squared
error to express the loss of accuracy due to unedited measurement errors.

Proposition 3.1. Let Ŷ and Ŷ ed be the true and edited estimators of the population
total YU with sampling weights {ωks}k∈U , respectively, under both the sample design p(·)
and the error model m. Then

MSEpm

[
Ŷ ed|G

]
= MSEp

[
Ŷ

]
+ Ep

[V̂ed
s +

(B̂ed
s

)2
+ 2

(
Ŷ − Y

) B̂ed
s

]
,

where B̂ed
s =

∑
k∈s ωksrksµks and V̂ed

s =
∑

k∈s

∑
l∈s ωksωlsrksrlsσkls.

Proof. Writing out

MSEpm

[
Ŷ ed|G

]
= Epm

[(
Ŷ ed − Ŷ

)2
|G

]
+Epm

[(
Ŷ − Y

)2
|G

]
+2·Epm

[(
Ŷ ed − Ŷ

)(
Ŷ − Y

)
|G

]
,

we identify:

• Epm

[(
Ŷ ed − Ŷ

)2
|G

]
= Ep

[Em

[(∑
k∈s ωksrksǫks

)2
|s,G

]]
= Ep

[V̂ed
s +

(B̂ed
s

)2
]
.

• Epm

[(
Ŷ − Y

)2
|G

]
= Ep

[Em

[(
Ŷ − Y

)2
|s,G

]]
= Ep

[(
Ŷ − Y

)2
]

= MSEp

[
Ŷ

]
.

• Epm

[(
Ŷ ed − Ŷ

)(
Ŷ − Y

)
|G

]
= Ep

[(
Ŷ − Y

)Em

[(
Ŷ ed − Ŷ

)
|s,G

]]
= Ep

[(
Ŷ − Y

) B̂ed
s

]
.

2This entails, for example, that Ŷ is not necessarily the Horvitz-Thompson estimator, but can possibly
be a ratio or regression estimator.
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From this expression one can readily read the contribution to the mean squared error
coming from the sampling design and that coming from the partial editing work. Note that

should every unit be edited, we would have rks = 0 for all k ∈ s and MSEpm

[
Ŷ ed|G

]
=

MSEp

[
Ŷ

]
, as expected: no further editing whatsoever can possibly reduce the mean

squared error due to sampling variability.

Now, given the (asymptotic) unbiasedness of Ŷ , it is immediate to find the following
bound in the limit3 ns → ∞:

MSEpm

[
Ŷ ed|G

]
≤ MSEp

[
Ŷ

]
+ Ep

[V̂ed
s +

(B̂ed
s

)2
]

.

We will use the second term as the figure of control for the loss of accuracy due to

allowing some errors in the data. In particular, if we write V̂ed
s +

(B̂ed
s

)2
≤ v2, we

immediately arrive at

MSEpm

[
Ŷ ed|G

]
≤ MSEp

[
Ŷ

]
+ v2.

To be concrete, we will refer to v2 as a accuracy control parameter. Were we consider-

ing several aggregates Y
(p)
U , p = 1, . . . , P , we would have to introduce P accuracy control

parameters v2
p in the corresponding bounds V̂(p)ed

s +
(B̂(p)ed

s

)2
≤ v2

p.

The use of the moments µks and σkls allows us to view B̂(p)ed
s and V̂(p)ed

s as estimators
of the bias and variance contributions, respectively, due to unedited measurement errors.

In this sense, V̂(p)ed
s +

(B̂(p)ed
s

)2
can be considered as the corresponding mean squared

error contribution arising from unedited measurement errors. This makes clear the role of
the bounds v2

p from a theoretical standpoint.

On the other hand, as discussed in section 2, our goal is to minimize the amount of
interactive editing, which we translate as maximizing the function

∑
k∈s rks. Thus, given

the set of variables {rks}k∈s we have the two ingredients to formulate an optimization
problem, namely (i) an objective function and (ii) a feasibility region. We formulate the
selective phase of the E&I strategy as the following combinatorial optimization problem:

max
∑

k∈s

rks p − a.s. (2)

such that V̂(p)ed
s +

(B̂(p)ed
s

)2
≤ v2

p p − a.s. p = 1, . . . , P

rks ∈ {0, 1} k = 1, . . . , ns.

3This limit is always understood as in Isaki and Fuller (1982).
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This first formulation embraces all kind of auxiliary information and does not fo-
cus upon any of its particular dimensions. However, note that the feasibility region
of problem (2) would be defined only if we knew the moments µks and σkls, which is
never the case. Thus we will estimate them, denoting µ̂ks and σ̂kls, and consequently

̂̂V(p)ed

s =
∑

k∈s

∑
l∈s ωksωlsrksrlsσ̂kls and

̂̂B(p)ed

s =
∑

k∈s ωksrksµ̂ks for the editing vari-
ance and editing bias estimators. The combinatorial optimization problem will then be
formulated as

max
∑

k∈s

rks p − a.s. (3)

such that
̂̂V(p)ed

s +

(
̂̂B(p)ed

s

)2

≤ v2
p p − a.s. p = 1, . . . , P

rks ∈ {0, 1} k = 1, . . . , ns.

This is the completely general formulation. The auxiliary information is embraced in
the estimation procedures chosen to set up the feasibility region. In the present work we
focus only on the case P = 1, ruling out the multivariate dimension (see however the
example in section 6), and we will only exploit the cross-sectional information when es-

timating V̂(p)ed
s +

(B̂(p)ed
s

)2
through the error model. In Arbués et al. (2009, 2010), the

longitudinal dimension is used to estimate the moments µks and σkls, apart from a gener-
alization of the mathematical nature of the variables rks, which are treated as continuous
random variables thus turning the problem into a stochastic optimization one.

Thus, in the following we will concentrate upon the following one-aggregate combi-
natorial problem, written in a simplified and more usual notation in optimization theory
(Beasley, 1996):

max 1T r (4)

s.t. rT Br ≤ v2

r ∈ {0, 1}×n,

where 1 is the vector (1, . . . , 1)T , the quadratic form rT Br stands for
̂̂Ved

s +

(
̂̂Bed

s

)2

for

the chosen aggregate to be estimated and we have dropped out the sample s subscript and
the references to the sampling design p(·).

4 Exploiting cross-sectional auxiliary information: linear

mixed models

Firstly we include a brief description in very general terms of our proposal to use linear
mixed models to incorporate auxiliary information in the preceding optimization problem.
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Later on, we adapt this general recipe to the exploitation of cross-sectional information.

In principle we must estimate the moments µks and σkls. Since the variables are
quantitative, we will make use of linear models including both fixed and random effects
in order to gain flexibility. As a possible a priori linear mixed model in vector notation,
we could think of ǫ = Xβ +

∑Q
q=1 Zquq + e, where X is the matrix of regressor values, β

is a vector of parameters (fixed effects), Zq are incidence matrices, uq are random effects
and e denotes the residual errors of the model fitting. However it is clear that we lack
the values of ǫ, which are never known. Instead we promote the original true values yk

from fixed but unknown numbers to random variables and include them in the modelling
so that our linear mixed model will be

yobs = X(y)β(y) +

Q̄∑

q̄=1

Z
(y)
q̄ u

(y)
q̄ + X(ǫ)β(ǫ) +

Q∑

q=1

Z(ǫ)
q u(ǫ)

q + e.

As in any linear mixed model, apart from the choice of effects, we must specify the dis-

tribution of u = (u
(y)
1 , . . . ,u

(y)

Q̄
,u

(ǫ)
1 , . . . ,u

(ǫ)
Q ,e) in terms of its variance components4 θ,

which must then be estimated by some point estimation method (see Searle et al. (1992)),
representing this as usually by θ̂. We propose to use the so-obtained Empirical Best Linear
Unbiased Predictor of any combination of effects and, in particular, of that representing

the measurement error µ̂s = EBLUP(X(ǫ)β(ǫ) +
∑Q

q=1 Z
(ǫ)
q u

(ǫ)
q )(θ̂). For the estimation

of σs = [σkls]1≤k,l≤ns
we propose to use the estimation of the mean squared error of the

EBLUP, denoted as M̂SE(µ̂s), as in small area estimation techniques (see e.g. Kackar and
Harville (1984); Prasad and Rao (1990)).

Following in general terms this recipe we concentrate upon exploiting cross-sectional
auxiliary information to set up the feasibility region of the optimization problem and, in
particular, the matrix B in (4). Having economic surveys in mind, we will consider a
population U of establishments, companies or economic units in general and a variable
y reflecting some aspects of the result of their economic activity (production, turnover,
income, expenses, . . . ). The population U accepts a nested classification according to their
elements’ economic activity, as e.g. the European Statistical Classification of Economic
Activities (NACE) (Eurostat, 2008). To simplify our arguments let us consider that the
population U is divided into j = 1, . . . , J disjoint subsets of this classification.

We have also in mind Groves’ classification of survey errors, which are due to the
interviewer, the respondent, the measurement instrument and the data collection mode
(Groves, 1989). For concreteness’ sake we consider i = 1, . . . , I interviewers and m =
1, . . . ,M data collection modes5. Thus we model the observed value of variable y of unit

4E.g. u ≃ N(0, V (θ)), being V = V (θ) the unconditional model variance of yobs.
5The measurement instrument is typically irrelevant in economic surveys and can be considered part

of the collection mode (CATI, CAPI, . . . (see e.g. Biemer and Lyberg (2003)), not alike in, say, some
agricultural surveys where crop surface measurements are an important part of the field work.
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k in branch j collected by interviewer i using mode m as

yimjk = β0j + β1jximjk + u2m + u3i + u4imjk + eimjk, (5)

where

• β0j is a random intercept term with normal distribution N(β0, σ
2
0j), often written as

β0j = β0 + u0j , with u0j ≃ N(0, σ2
0j);

• β1j is a random slope with normal distribution N(β1, σ
2
1j), often written as β1j =

β1 + u1j , with u1j ≃ N(0, σ2
1j);

• ximjk is the value of an auxiliary variable x of unit k in branch j collected by
interviewer i using mode m;

• u2m is a random effect due to the collection mode with distribution N(0, σ2
2m);

• u3i is a random effect due to the interviewer with distribution N(0, σ2
3i);

• u4imjk is a random effect due to the respondent with distribution N(0, σ2
4);

• eimjk is the residual term with distribution N(0, σ2
e );

• all these random terms are independent among themselves.

We comment some assumptions. The random nature of the intercept and slope terms
are assumed on the basis of taking into account possible differences in the linear relation
between the y and x variable values for the different branches j. Implicit in the structure
is the hypothesis that both objective and auxiliary variables for each unit are collected
by the same agent i using the same mode m. Were this not the case, a much more
complex expression with respect to the subscripts i and m would be necessary. Each
source of error is assumed to have its own variability, except for the respondent random
effect, where the same variability has been assigned throughout the population. We are
aware that less simple hypotheses do exist, e.g., by recognizing different variability in
the respondents’ random effect. This could be taken into account by dividing U into
g = 1, . . . , G groups according to their response behaviour6. In the latter case we would
need a new subscript g = 1, . . . , G denoting instead u4gimjk with u4gimjk ≃ N(0, σ2

4g), as
well as ygimjk, xgimjk and egimjk. However, within a reasonable generality, we keep our
arguments as simple as possible. This has an important consequence: u4imjk and eimjk

are statistically indistinguishable. Thus we rewrite (5) as

yimjk = β0j + β1jximjk + u2m + u3i + eimjk, (6)

with the caveat that the new residual term eimjk also contains the respondent contribu-
tion to the random error ǫk. In this sense, in the model (6) a high residual term is not
necessarily interpreted as a deficient fitting, but as an a priori high random nonsampling

6Equivalently we are assuming G = 1.
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error in the reported value yobs
k .

Now instead of estimating µks and σkls we writeV̂ed
s +

(B̂ed
s

)2
=

∑

k∈s

∑

l∈s

ωksωlsrksrlsE [ǫkǫl|s,G] ,

and we focus on estimating ǫk by ǫ̂k = yobs
k − ŷk, where ŷk = ŷimjk = β̂0j + β̂1jximjk. Using

general techniques in linear mixed models (see Searle et al. (1992), chap. 7) we write in
vector notation ŷ = Xβ̂ + Zû, where ŷ is the vector of predicted values of the modelled
true values of the variable y; β̂ = (β̂0 β̂1)

T and û = (uT
0 uT

1 )T are estimators/predictors
of the fixed β and random u effects under the model (6); and where the structure of the
matrices X and Z depends very sensitively on the details of the survey. In section 6
we will explicitly express them after applying these arguments to the industrial turnover
index and industrial new orders received index surveys conducted at INE Spain. Then we
have

E
[
ǫ̂ǫ̂T |s,G

]
= E

[
(yobs − ŷ)(yobs − ŷ)T |s,G

]

= (yobs − Xβ̂)(yobs − Xβ̂)T + XV̂[β̂]XT + ZV̂[û]ZT , (7)

where V̂[β̂] and V̂[û] are empirical estimators of the respective variances7. Denoting the
matrix (7) by E = E

[
ǫ̂ǫ̂T |s,G

]
, we have indeed the positive semidefinite matrix B of our

optimization problem (4):

[B]kl = ωksωlsEkl.

5 Solution to the univariate combinatorial problem

The combinatorial optimization problem to be solved is

max 1T r (8)

s.t. rT Br ≤ v2,

r ∈ {0, 1}×n.

Beforehand, we need some notation. We will denote by I the index set of components
of r ∈ {0, 1}×n. Once and again we will consider a disjoint partition of I in two subsets
I = I0 ∪ I1 such that I0 = {i ∈ I : ri = 0} and I1 = {i ∈ I : ri = 1}. The cardinality

7Those obtained after substituting the variance components θ by their point estimation θ̂ (e.g. if

V[β̂] = V[β̂](θ), then V̂[β̂] = V[β̂](θ̂)). These are often computed in statistical modelling software packages.
See Searle et al. (1992), page 272 for general expressions of variances and covariances of BLUPs of both
fixed and random effects.
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of both subsets will be denoted by n0 and n1, respectively, so that n = n0 + n1. Note
that having a particular partition (I0, I1) is equivalent to having a particular binary vector
r ∈ {0, 1}×n. We denote by Πk the set of binary vectors with k components equal to 1 and
n−k components equal to 0, that is, Πk = {r ∈ {0, 1}×n :

∑
i∈I ri = k}. Note that the set

Π of all vertices of the hypercube {0, 1}×n can be decomposed as Π =
⋃n

k=0 Πk. The feasi-
bility region will be denoted by R = {r ∈ {0, 1}×n : rT Br ≤ v2}. For later convenience we
also introduce the convex hull of R, which we denote by Rc = {r ∈ [0, 1]n : rT Br ≤ v2}.
Note that R = Rc ∩ Π. Finally, given any real vector x = (x1, . . . , xn) we denote by
x̄ = (x(1), . . . , x(n)) the ordered vector such that x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n), where
this is a non-decreasing sequence of the values xi of the components of x.

In very general terms, we propose to reach an optimal solution of problem (8) in two
steps:

1. Choose an initial binary vector r(0) in ΠM , where M ≤ n is such that Πj ∩ R = ∅
for all j > M .

2. Search ΠM for a binary solution such that it is also contained in R. If it exists, then
this is an optimal solution r∗. If if does not exist, then jump down to ΠM−1 and
repeat this search recursively until finding an optimal solution.

We must make these steps concrete.

5.1 Initial binary vector

To choose the initial binary vector consider the convexified problem

max 1Trc (9)

s.t. rT
c Brc ≤ v2,

rc ∈ [0, 1]×n.

If r∗ denotes an optimal solution to the original problem (8) and r∗
c is an optimal

solution to the convexified version (9), it is clear that 1Tr∗ ≤ ⌊1T r∗
c⌋, since R ⊂ Rc,

where ⌊·⌋ stands for the floor function.

Now use the spectral decomposition of B to write B = ODOT so that the problem (9)
can be rewritten as

max 1Ts (10)

s.t. sT Ds ≤ v2,

0 ≤ s ≤ z,
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where s = OT rc and z = OT1. Define the index sets J0 and J1 by J0 = {i ∈ I : Dii = 0}
and J1 = {i ∈ I : Dii 6= 0}. These two sets allow us to decompose any vector a as
a = [a0 a1], with evident definitions of ak, k = 0, 1 and the diagonal matrix D as
D = D0 ⊕ D1 = diag{Dii}i∈J0 ⊕ diag{Dii}i∈J0 . Problem (10) can be again rewritten as

max zT
1 s1 + zT

0 s0

s.t. sT
1 D1s1 ≤ v2,

0 ≤ s1 ≤ z1,

0 ≤ s0 ≤ z0,

which can be divided into two separate problems:

max zT
0 s0

s.t. 0 ≤ s0 ≤ z0,

and

max zT
1 s1

s.t. sT
1 D1s1 ≤ v2,

0 ≤ s1 ≤ z1.

The first one has an immediate optimal solution:

s∗0i =

{
0 if z0i ≤ 0,
z0i if z0i > 0.

We find an upper bound for the maximum value of the objective function of the second
problem. Consider the relaxed problem

max zT
1 s1

s.t. sT
1 D1s1 ≤ v2,

s1 ∈ Rm1 ,

where m1 = card J1. Denote by R1 its feasibility region and by s∗1 its optimal solution.
Note that D1 is a positive definite matrix. Using Lagrange multipliers we readily have

s∗1 =

√
v2

zT
1 D−1

1 zT
1

D−1
1 z1,

which yields a maximal value of the objective function given by zT
1 s∗1. Now, since {s1 ∈

[0, 1]×m1 : sT
1 B1s1 ≤ v2} ⊂ R1, we conclude that1T r∗ ≤ ⌊zT

0 s∗0 + zT
1 s∗1⌋.
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This is the initial upper bound, which we will denote by n
(0)
1 = ⌊zT

0 s∗0 + zT
1 s∗1⌋, de-

termining the first set ΠM where we must seek an initial binary vector r. Note that by

construction we have Πk ∩ R = ∅ for all k > M . Given n
(0)
1 define I1 = {i ∈ I : Bii ≤

diag(B)
n

(0)
1
} and I0 = I − I1. This is our initial binary vector. Note that if it is feasible

(i.e. if
∑

i∈I1

∑
j∈I1

Bij ≤ v2), then it is an optimal solution. Otherwise we proceed to
search consecutively ΠM−1,ΠM−2,ΠM−3, . . . ,Π0 for a feasible binary vector.

5.2 Search in Πk

In order not to run into computational troubles we must fix a criterion to carry out an
exhaustive, although efficient, search for an optimal solution. To this end, firstly we look
for the binary vector in ΠM yielding the minimum value of

∑
i∈I1

∑
j∈I1

Bij. If it is a

feasible vector, i.e. if
∑

i∈I1

∑
j∈I1

Bij ≤ v2, then it is an optimal solution. Otherwise we
resume the search in the set ΠM−1. The two key steps are (i) the choice of the initial
vector when the search begins in each Πk and (ii) the searching process in each Πk.

We propose to use the following lemmas, which we state without proof, to build up a
search algorithm:

Lema 5.1. If I1 = I∗1 ∪ {i∗}, where i∗ ∈ I1 and I∗1 = I1 − {i∗}, then
∑

i∈I1

∑

j∈I1

Bij =
∑

i∈I∗1

∑

j∈I∗1

Bij + 2
∑

i∈I∗1

Bii∗ + Bi∗i∗

=
∑

i∈I∗1

∑

j∈I∗1

Bij + 2
∑

i∈I1

Bii∗ − Bi∗i∗

Lema 5.2. If I∗1 = I1 ∪ {i∗}, where i∗ ∈ I0, then
∑

i∈I∗1

∑

j∈I∗1

Bij =
∑

i∈I1

∑

j∈I1

Bij + 2
∑

i∈I1

Bii∗ + Bi∗i∗

From these lemmas we propose to search the binary vector with minimum
∑

i∈I1

∑
j∈I1

Bij

by iteratively redefining I1 by I1 := (I1 − {i∗}) ∪ {j∗}, where

i∗ = argmaxi∈I1
{2

∑

k∈I1

Bki − Bii},

j∗ = argminj∈I0
{2

∑

k∈I1−{i∗}

Bkj + Bjj},

until the minimal vector is found. To jump down from Πk to Πk−1 when there is no
feasible vector in Πk we need the following lemma:

Lema 5.3. Let I
(0)
1 = I

(k)
1 ∪ Jk, where Jk = {i1, . . . , ik} ⊂ I

(0)
1 and I

(k)
1 = I

(0)
1 − Jk

for k = 1, . . . ,K ≤ n. Define δ(I
(k−1)
1 , ik) = 2

∑
i∈I

(k−1)
1

Biik − Bikik and ∆(I
(k)
1 ) =

∑
i∈I

(k)
1

∑
j∈I

(k)
1

Bij for k = 1, . . . ,K. Then
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∆(I
(0)
1 ) = ∆(I

(k)
1 ) +

k∑

j=1

δ(I
(j−1)
1 , j) ∀k = 1, . . . ,K.

Proof. Use lemma (5.1) recursively.

In the light of this result, to jump down from Πk to Πk−1, we choose

jk = argmax
j∈I

(k−1)
1

δ(I
(k−1)
1 , j).

Thus we have the ingredients to propose a complete algorithm.

5.3 The algorithm

Putting all preceding steps together we have an algorithm to reach the optimal solu-
tion of the univariate combinatorial problem (8). The complete algorithm is detailed in
mathematical style pseudocode in appendix A. The analysis of this algorithm and its
computational efficiency lies beyond the scope of this paper. Our goal is to show that an
algorithm exists and that it works with actual data from an official survey.

Note that the algorithm considered here does not attempt to find all optimal solutions,
only one yielding the minimum value of

∑
i∈I1

∑
j∈I1

Bij is sought. However, note that
once an optimal solution is found with our algorithm, it is immediate to proceed the search
for the rest of optimal solutions as follows. Given our optimal solution I∗ = I∗1 ∪ I∗0 , define
I∗∗1 = (I∗1 − {i∗}) ∪ {j∗}, where

i∗ = argmaxi∈I∗1




2
∑

k∈I∗1

Bik − Bii




 ,

i∗ = argminj∈I∗0




2
∑

k∈I∗1

Bjk + Bjj




 .

If I∗∗ is feasible, then it is also optimal and you can apply the same argument itera-
tively; otherwise there is no more optimal solutions.

6 Application to the Spanish industrial turnover index and

industrial new orders received index surveys

We applied the preceding proposal to the Spanish industrial turnover index (ITI) and
industrial new orders received index (INORI) surveys conducted at INE Spain as follows.
Beforehand we need a brief description of these statistical operations. The Spanish ITI
and INORI are short-term statistics whose data are collected monthly and jointly through
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Internet and mail questionnaires. The sampling design is an extreme cut-off sampling
design where ωks = 1 for all those industrial establishments included in the sample. Both
indexes are Laspeyres-type indexes. Different levels of disaggregation according to Eu-
rostat’s so-called main industrial groupings [REF] are published at the national realm.
Internet questionnaires are received directly from the respondents in our central premises
whereas mail questionnaires are collected locally at provincial delegations where the E&I
process begins immediately and then are sent to the central premises, where a final E&I
stage is undergone for both the electronic and paper modes.

To apply our preceding proposal to the Spanish ITI and INORI we focused only on
those data collected during 2008 through Internet since we had both raw and edited data
for these respondents, which amounted up to one third of the total sample. We discarded
January data since for some unknown reason the sample size was too reduced in this pe-
riod. So, starting in February (IFeb,2008 = 100), which was fully interactively edited, we
applied our proposal month to month choosing a somewhat arbitrary value of the accuracy
control parameter v2 when passing from one period to the next.

Firstly we adapted the generic E&I strategy depicted in figure 1 in section 2 to these
surveys. The initial E&I phase was designed in four stages, namely (i) we dealt with
unit measure errors by taking into account digit numbers difference for each respondent
between two consecutive periods and multiplying by a factor 1000 when such a diference
was 3; (ii) we turned every missing value of each variable entering a balance equation
satisfied by the reported non-missing values into a zero value; if the balance equation was
not satisfied by the latter values, we carried out no change; (iii) those respondents with
variable values above an index threshold8 were assigned to interactive E&I; and finally
(iv) all respondents with a missing value either on the current or the preceding period
were also assigned to interactive E&I. Given that the Internet-mode collected sample is
considerably lesser than the whole sample, we focused only on the general index, discard-
ing lower levels of disagreggation in main industrial groupings.

Up to this point we had two data streams, that entering interactive E&I and that
entering selective E&I. We applied the preceding selective editing proposal to the latter
by choosing yk as value at the current period of the variable of interest and xk as the value
of the same variable at the preceding month. Note that the initial E&I design ensured that
the (x, y) set used to build the linear model was complete, i.e. it had no missing value.
The linear model gained simplicity from the facts that there was only one collection mode
(Internet questionnaire) and no interviewer. The branch j = 1, . . . , J was determined by
a two-digit NACE variable. Thus the model read in matrix notation

y = β01+ β1X + Z0u0 + Z1u1 + e,

where9

8Set arbitrarily to 1% of the index computed up to the current status of editing.
9{ej}j=1,...,J denote the canonical vectors, {Ejj}j=1,...,J are the diagonal Weyl matrices and ⊗ stands
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• y =
∑J

j=1 ej ⊗ (yt
j1, . . . , y

t
jnj

)T ;

• X =
∑J

j=1 ej ⊗ (yt−1
j1 , . . . , yt−1

jnj
)′;

• [up]j = uqj , for q = 0, 1 and j = 1, . . . , J ;

• Z0 =
∑J

j=1 Ejj ⊗ 1nj
;

• Z1 =
∑J

j=1 Ejj ⊗ xj ;

• V

(
u0
u1
e

)
=

(
G2J×2J 02J×n

0T
2J×n σ2

eIn

)
, with G =

(
σ2

u0 0

0 σ2
u1

)
⊗ IJ .

Then ŷt
jk was computed for each unit using the lme4 package in language R (Bates

and Maechler, 2010), so that ǫ̂jk = yobs
jk − ŷjk and the recipe in section 4 driving us to the

matrix E applied.

Once we carried out the selective editing phase new respondents were assigned to in-
teractive E&I and the rest entered into automatic E&I. In our study the interactive E&I
amounted to recovering the final edited value accepted in the original survey which un-
derwent the traditional E&I mode in 2008 at INE Spain’s central premises. On the other
hand, we reduced the automatic E&I to making no change whatsoever on the reported
raw data. Moreover, no further macro E&I phase was carried out. Both final data stream
were joined back together to compute the final index. The selective phase was applied
separately both to turnover and new orders received variables but assigning a respondent
to interactive E&I whenever it was so assigned in any of both variables.

Complete results are depicted in the graphs in appendix B. By and large, a reduction
in the amount of interactive E&I is observed associated to a loss of accuracy in the indexes,
where this loss of accuracy is understood as a departure from the index computed under
the traditional E&I strategy. Furthermore, this association is established in a controlled
way, since as a result of the method the set of units entering interactive E&I is flagged
while keeping the accuracy under control after choosing the accuracy control parameter v2.

After the somewhat arbitrarily choice of the accuracy control parameter on each pe-
riod10 we computed the general ITI and INORI for both the data edited under the tra-
ditional strategy and the present strategy and compared them to the published original
indexes obtained with the whole sample, but changing the basis to make it coincide with
our previous choice IFeb,2008 = 100. The comparison is illustrated in figure 2.

for the Kronecker product.
10Subject matter expertise must guide this choice; ours in this study was v2 = (2 · 108, 2 · 105, 106, 5 ·

105, 105, 105, 5 · 105, 1.4 · 105, 105, 2 · 105) for each period.
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Figure 2: Comparison of ITI and INORI under traditional and selective editing.

7 Discussion

We discuss some relevant issues concerning this proposal both from the theoretical view-
point and in the light of the preceding application.
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7.1 Theoretical considerations

Comparison with the general strategy in the literature.- The preceding approach
to selective editing shows both similarities and differences with the four-element general
strategy depicted in the introduction (Lawrence and McKenzie, 2000), which we comment
in detail.

In first place, the role of the expected amended values is now played by the conditional
moments µks and σkls. As in the original approach, the conditional moments should be
chosen in line with the general editing model being used, they will usually rely on subject
matter knowledge and they do not need to be accurate enough as to be used as imputed
values. They provide the basis to establish a comparison of the relative importance, across
units, of the errors to be edited and are obtained within an assumed linear mixed model.

Secondly, score functions are not used in this approach. This is an important differ-
ence. Score functions are used to provide a final ranking of respondents. Here this ranking
is substituted by a direct determination of those units to be recontacted. Despite the fact
that in both approaches a final subset of the sample s is obtained (mathematically indi-
cated by rs), in the original scheme we also have information about which units show a
greater incidence on the estimates, whereas in the optimization scheme we lack this. In
contrast, in the former both local and the global score functions must be chosen, while in
the latter this is not necessary. In our view this can be understood as an advantage since
the intervention of the statistician is reduced in the survey estimates production. This is
especially relevant in important large-scale surveys with far-reaching consequences, “where
it seems desirable, to the extent feasible, to avoid estimates or inferences that need to be
defended as judgments of the analysts conducting the survey” (Hansen et al. (1983), p.
785).

Finally, the role of cut-off scores is now played by the accuracy control parameters v2
p,

p = 1, . . . , P . The choice of these bounds, as with the cut-off scores, should be based on
subject matter knowledge and should follow external considerations related to the accu-
racy of the survey estimates. In particular a thorough analysis like the one conducted in
the preceding section using data from previous periods is highly recommended.

The role of the accuracy control parameters v2
p, data imputation and variance

estimation.- By the choice of the name “accuracy control parameters” for v2
p we do not

intend to convey the idea that the final variance estimation is completely controlled by
them. Let us remark clearly that we are only tackling with the error detection step in
the selective editing phase of the E&I strategy. Once influential units entering interac-
tive editing are identified, data imputation must be undergone and consequently variance
estimation must take this whole process into account. In this sense the accuracy control
parameters v2

p are just a small part of the entire E&I strategy whose role in the variance
estimation is left as future research.
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Disaggregated estimates.- In nearly all official statistics, estimates are required to be
published in disaggregated domains (size categories, classification branches, regional areas,
etc.). In the preceding applications this disaggregation has not been carried out; only fully
aggregated estimates have been considered. If we were to give disagreggated estimates, we
would have to identify influential units at such a disagreggated level by splitting up the
sample into the corresponding disjoint domains and perform the same preceding analysis
in each one.

Multivariate generalization.- Nowadays every survey collects values of several vari-
ables. In this respect, two comments must be made. Firstly, the present proposal only
considers univariate editing tasks, i.e. trivial questionnaires with only one item. This
comes from the optimization problem (8), where the feasible region is determined ac-
counting only for the accuracy control on one aggregate Ŷ . However in the application to
the ITI and INORI surveys we have overcome this strict limitation by applying the selec-
tive editing proposal as many times as the number of items to be edited (two in our case).
Then every questionnaire with a flagged item is set to enter interactive E&I. Being aware
of the practical limitations of this approach we recognize the multivariate generalization of
the algorithm as an open problem for future research, considering this proposed shortcut
as an upper bound to the solution of the multivariate problem.

Secondly only linear estimators of the form Ŷ =
∑

k∈s ωksyk have been considered
in the formulation of the optimization problem. This is another limitation, since, for
example, ratio estimators like R̂ = Ŷ (1)/Ŷ (2), where Ŷ (i) are both estimators arising from
data collected in the survey, although much used in practice, are ruled out. We propose
another roundabout solution by considering separately the selective editing of Ŷ (1) and
Ŷ (2), making each unit k enter interactive E&I whenever it is flagged in any of both cases.

Algorithm efficiency.- Although a complexity analysis of the presented algorithm is
beyond the scope of this paper, we point out that an efficiency gain would be obtained
if we could enhance the initial binary vector choice step. Note that the step presented
herein is not sensitive to the real parameter v2 when going from the upper bound obtained
from the convexified problem to the binary initial vector. We claim that a more clever
choice taking into account v2 will increase the efficiency of the algorithm rendering it more
practical.

The model.- Our choice of the model, and in particular that of the exogenous variable
xk = yt−1

k , seems to suggest that we are not actually exploiting cross-sectional auxiliary
information, but longitudinal information. This is not the case. The landmark in the
model is that the estimation/prediction of its coefficients arises from the relation of the
exogenous variables to the endogenous ones all throughout the sample11. The time depen-
dency of the endogenous variables is accesory: had we an alternative independent variable,

11In rigour, the subset of the sample not entering interactive E&I at the stage of construction of the
model.
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we would have obtained a similar result. In our view, this poses two interesting features of
the model we chose. On the one hand, the model is versatile because it does not depend
on the particular meaning of the variables involved in these particular surveys and could
be applied to other surveys with continuous variables. On the other hand, the model is
very simple and could be sophisticated with more variables if necessary. Indeed, keeping
the same simple structure, combination of changes referring to the branches and to the
independent variables immediately makes the number of possibilities to explore proliferate.

Finally the role of the term eimjk in model (6) as a mixture of the error due to the
respondent and the residual of the model looks arguably suspicious. Indeed this is a
delicate point since a poor model fitting could be wrongly understood as a measurement
error possibly not being the case. The residual eimjk carries both features: lack of model
fitting and respondent error. Then it is compulsory for the model to be trustworhty enough
as to avoid the misinterpretation of eimjk. This is where the relaxation on the demand
about the estimation of the moments µks and σkls within acceptable bounds fits in.

7.2 Considerations in the light of the preceding application

In view of the results reported in the preceding section we can comment the following.
Firstly we can observe a gradual stepwise variation in the index error as the accuracy
control parameter v2 increases. This variation, in our view, shows two components: an
increasing drift and a random element. The increasing drift reveals an intuitive fact: the
lesser we edit, the greater the index error. On the other hand, the random element reflects
mimetically the random nature of the effect of measurement errors on aggregates. Sec-
ondly, the number of units entering interactive E&I shows a clear monotically decreasing
behaviour with respect to the accuracy control parameter v2. This is also intuitive: the
less accuracy demanded, the less number of units needed to enter interactive E&I.

Nonetheless we remark some relevant points. Firstly, despite choosing v2 = 0, which
presumably should drive us to no error in the index, this is not actually the case. The
reason is that the index computation depends heavily on its value on the preceding pe-
riod, which already contained the error resulting from any choice such that v2 > 0 on that
period. Thus this choice should take this cumulative effect into account. Secondly a great
departure from the published full-sample-based INORI is observed in March both for the
traditional and selective editing strategies. This is an immediate consequence of the lack
of a macroediting phase. This departure arises from the existence of a single respondent
with a true outlier, meaning having the same variable value before and after the traditional
editing strategy. This shows that this proposal is intended to be part of a whole strategy.
Finally, some exceptions apparently appear in some months where the gradual stepwise
drift is indeed decreasing. We believe that this is a consequence of a dominance of the
random component over the gradual drift together with the cumulative error pointed out
above, which entails a nonnegligible effect upon the initial error for v2 = 0.

Finally, the reduction of interactive E&I is not especially significant with those values
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of v2 chosen in our analysis (see figure 2). However judging from the closeness between
the indexes under the traditional and the selective editing strategies, we believe that other
choices of v2 on each month would entail a higher interactive editing reduction keeping
the indexes within an acceptable margin of error. This is obviously under the survey
conductors’ judgment.

8 Conclusions

We have proposed to formulate the selective editing stage of an E&I strategy as a combina-
torial optimization problem by defining a binary variable rks ∈ {0, 1} for each unit k in the
sample s denoting whether it must undergo interactive editing (rk = 0) or automatic edit-
ing (rk = 1). After modelling for each variable of interest y(p) the so-called editing bias and
editing variance estimators B̂ed

s =
∑

k∈s ωksrksµks and V̂ed
s =

∑
k∈s

∑
l∈s ωksωlsrksrlsσkls,

respectively, where ωks is the sampling weight for unit k, µks is the expected value of the
random measurement error ǫk of unit k and σkls the covariance of this error of both units
k and l, the problem reads

max
∑

k∈s

rks

such that
̂̂V(p)ed

s +

(
̂̂B(p)ed

s

)2

≤ v2
p p = 1, . . . , P

rks ∈ {0, 1} k = 1, . . . , ns.

The notation
̂̂V(p)ed

s and
̂̂B(p)ed

s reflects that µks and σkls must be substituted by
their modelled counterparts. This is undergone using a linear mixed model, where cross-
sectional auxiliary information is incorporated. Here only the univariate version (P = 1)
has been tackled, giving a detailed algorithm for its solution. We have proposed a round-
about solution to this limitation by suggesting to apply the univariate algorithm to each
of the involved variables.

We have applied the proposal to the Spanish industrial turnover index and industrial
new orders received index surveys. As a general result we have obtained a reduction of
the amount of interactive editing (hence of editing resources) controllably impinging upon
the accuracy of the resulting indexes.

As potential advantages of this approach to selective editing, we can state that the se-
lection of units for interactive editing is simply based upon editing resources reduction and
estimates accuracy control and that the survey conductors’ intervention in the production
process is reduced with respect to more traditional approaches. On the contrary, we lose
the ordering of all sampled units according to a global score as in traditional methods.
This obliges us to solve the optimization problem for each choice of the accuracy control
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parameter v2.

Several questions keep naturally open. Firstly, a generalization of this formulation
is desirable providing a general algorithm to find a solution to the multivariate problem
(3) and a treatment of nonlinear estimators θ̂ = g(Ŷ (1), . . . , Ŷ (P )). Secondly, once the
E&I strategy is completed with a carefully chosen imputation scheme, a further analysis
must be undertaken relating the accuracy control parameter v2 and the estimation of the
variance of the final estimate under the whole E&I process. Finally, the use of linear
mixed models makes us cherish the hope that arguably a more general formulation of the
problem giving room for generalized linear mixed models can pave the way for carrying
out selective editing on qualitative variables. All these are left for future research.

A The complete algorithm

This is the pseudocode in mathematical style of the complete algorithm to solve the uni-
variate combinatorial problem (8).

Complete Algorithm

z := O
T1;

J0 := {i ∈ I : Dii = 0};

J1 := I − J1;

z0 := [zi]i∈J0
;

z1 := [zi]i∈J1
;

D1 := diag{di}i∈J1
;

s
∗
0 := argmax

0≤s0≤z0
z

T
0 s0;

s
∗
1 := argmax

s
T

1
D1s1≤v2 z

T
1 s1;

n1 := ⌊zT
0 s

∗
0 + z

T
1 s

∗
1⌋;

I1 :=
{

i ∈ I : di ≤ diag(D)
n1

}
;

I0 := I − I1;

∆act :=
∑

i∈I1

∑

j∈I1

Bij − v
2;

i
∗ := argmaxi∈I1




2
∑

k∈I1

Bki − Bii




 ;

j
∗ := argminj∈I0




2
∑

k∈I1−{i∗}

Bkj + Bjj




 ;

∆pre := ∆act;

I
(pre)
1 := I1;

I
(pre)
0 := I − I

(pre)
1 ;

I1 := (I1 − {i∗}) ∪ {j∗};

I0 := I − I1;
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∆act :=
∑

i∈I1

∑

j∈I1

Bij − v
2;

While ∆pre > ∆act

Do i
∗ := argmaxi∈I1




2
∑

k∈I1

Bki − Bii




 ;

j
∗ := argminj∈I0




2
∑

k∈I1−{i∗}

Bkj + Bjj




 ;

I
(pre)
1 := I1;

I1 := (I1 − {i∗}) ∪ {j∗};

I
(pre)
0 := I − I

(pre)
1 ;

I0 := I − I1;

If ∆act ≤ 0 Then Return r
∗
i =

{
1 i ∈ I1

0 i ∈ I0
;

∆pre := ∆act;

∆act :=
∑

i∈I1

∑

j∈I1

Bij − v
2;

EndWhile ;

I1 := I
(pre)
1 ;

I0 := I
(pre)
0 ;

While ∆act :=
∑

i∈I1

∑

j∈I1

Bij − v
2

> 0

Do i
∗ := argmaxi∈I1




2
∑

k∈I1

Bki − Bii




 ;

I1 := I1 − {i∗};

I0 := I − I1;

∆act :=
∑

i∈I1

∑

j∈I1

Bij − v
2;

EndWhile ;

Return r
∗
i =

{
1 i ∈ I1

0 i ∈ I0
.
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B Graphs

This appendix gathers all graphs resulting from the application of the selective editing proposal to both
the industrial turnover index and industrial new orders received index on each month from March, 2008
to December, 2008 (see text for details).
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