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Abstract: We discuss some limitations of the use of generic tests, such as the Pearson’s χ2, for testing
Benford’s law. Statistics with known distribution and constructed under the specific null hypothesis
that Benford’s law holds, such as the Euclidean distance, are more appropriate when assessing the
goodness-of-fit to Benford’s law, and should be preferred over generic tests in quantitative analyses.
The rule of thumb proposed by Goodman for compliance checking to Benford’s law, instead, is shown
to be statistically unfounded. For very large sample sizes (N > 1000), all existing statistical tests are
inappropriate for testing Benford’s law due to its empirical nature. We propose a new statistic whose
sample values are asymptotically independent on the sample size making it a natural candidate for
testing Benford’s law in very large data sets.
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1 Introduction

Benford’s law (Benford, 1938) on the distribution of the first significant digit (FSD) of numerical data
is an empirical law that has been observed to emerge in disparate data sets, from finance (Nigrini,
1996; Cho and Gaines, 2007) and natural sciences (Sambridge et al., 2010) to COVID 19 data (Sam-
bridge and Jackson, 2020; Campanelli, 2022).

By analyzing the data coming from very different distributions, such as length of rivers, popu-
lations of cities, etc., Benford found that the probability of occurrence of the first significant digit d,
PB(d), followed the empirical law

∀ d ∈ {1, ..., 9} : PB(d) = log

(
1 +

1

d

)
. (1)

Although we know today that Benford’s law holds for some particular distributions (see Morrow
(2014) and references therein) and that specific principles lead to the emergence of such a law (Hill,
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42 L. CAMPANELLI

1995a,b,c), the exact fundamental bases upon which Benford’s law reposes are still unknown [for a
review of Benford’s law, see Miller (2015)].

The most common test in use for testing Benford’s law is the Pearson’s χ2. In our case the χ2

statistic can be written as

χ2 = N
9∑
d=1

[PB(d)− P (d)]2

PB(d)
, (2)

where P (d) is the observed relative frequency of the FSD d, and N is the sample size. However, such
a test is based on the null hypothesis of a continuous distribution, and is generally conservative for
testing discrete distributions as the Benford’s one (Noether, 1963). This problem has been recently
solved by Morrow (2014) who has computed asymptotically test values for this statistic under the
specific null hypothesis that Benford’s law holds.

Another estimator used for checking conformance to Benford’s law is the “normalized Euclidean
distance”, d∗, introduced by Cho and Gaines (2007) and defined by

d∗ =
1

D

√√√√ 9∑
d=1

[P (d)− PB(d)]2 , (3)

where D =
√∑8

d=1 P
2
B(d) + [P (9)− 1]2 is a normalization factor that assures that d∗ is bounded by 0

and 1. At the moment of its introduction, however, the properties of this new estimator were not well
understood and no test values were reported. These problems have been solved by Morrow (2014),
who has provided asymptotically test values for the “Euclidean distance”

d∗N =

√√√√N
9∑
d=1

[P (d)− PB(d)]2 , (4)

and by the author who, recently enough (Campanelli, 2023), has found an empirical expression of
its cumulative distribution function. A simple measure of fit to Benford’s law, instead, has been
proposed by Goodman (2016). His “rule of thumb” for conformance to Benford’s law is d∗ ≤ 0.25.

One of the goals of this paper is to show the statistical incorrectness of Goodman’s rule of thumb.
Also, we will show that the use of p values of the χ2 statistic for testing Benford’s law is only appro-
priate for “qualitative” analyses, while the use of the Euclidean distance test should be preferred in
“quantitative” analyses. Finally, we will discuss some limitations of existing statistical tests to assess
the goodness-of-fit to Benford’s law for very large number of data points (N ≤ 1000) and/or small
range of data, and we will propose a new statistic that overcome such limitations.

2 Euclidean distance statistic, χ2 test, and Goodman’s rule of thumb

The knowledge of the cumulative distribution function of the Euclidean distance statistic as a func-
tion of the sample size N , as derived in Campanelli (2023), makes possible the computation of p
values and then allow us to check for the conformance of a set of data to Benford’s law in a quanti-
tative way. It is interesting, for example, to reconsider the data that allowed Benford to discover the
law that now brings his name. In Table 1, we show the Euclidean distance d∗N and its corresponding
p value for the first-digit distribution of the twenty different groups of counts discussed by Ben-
ford in his original paper (Benford, 1938), while in Figure 1, we show the corresponding first-digit
frequencies superimposed to Benford’s law.
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Figure 1: Panels A to T. Observed first-digit frequencies for the samples originally considered by
Benford (1938) and shown in Table 1. Bottom panel. First-digit frequency of the values of the physical
constants tabulated in Lide (2002). The (blue) continuous lines represent Benford’s law.
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Group Title N d∗ d∗N p χ2 p(χ2)

A Rivers, Area 335 0.0354 0.6705 0.78(9) 4.9617 0.7617
B Population 3259 0.0602 3.5625 0.000(0) 118.63 0.0000
C Constants 104 0.1581 1.6704 0.00(4) 24.441 0.0019
D Newspapers 100 0.0107 0.1107 0.999(9) 0.1602 1.0000
E Spec. Heat 1389 0.0949 3.6652 0.000(0) 111.21 0.0000
F Pressure 703 0.0122 0.3360 0.99(6) 1.2704 0.9959
G H.P. Lost 690 0.0188 0.5111 0.94(6) 3.4606 0.9022
H Mol. Wgt. 1800 0.0931 4.0924 0.000(0) 125.76 0.0000
I Drainage 159 0.0843 1.1018 0.17(8) 11.142 0.1938
J Atomic Wgt. 91 0.1893 1.8718 0.000(9) 17.246 0.0277
K n−1,

√
n,... 5000 0.0827 6.0631 0.000(0) 440.76 0.0000

L Design 560 0.0588 1.4430 0.02(4) 19.213 0.0138
M Digest 308 0.0403 0.7333 0.69(8) 3.2271 0.9193
N Cost Data 741 0.0443 1.2503 0.08(0) 15.601 0.0485
O X-Ray Volts 707 0.0313 0.8622 0.48(9) 5.4256 0.7113
P Am. League 1458 0.0315 1.2461 0.08(2) 14.595 0.0675
Q Black Body 1165 0.0264 0.9350 0.37(7) 9.5229 0.3001
R Addresses 342 0.0225 0.4314 0.98(0) 1.2966 0.9956
S n1,n2,... n! 900 0.0583 1.8140 0.00(1) 24.994 0.0016
T Death Rate 418 0.0480 1.0178 0.26(6) 7.5550 0.4781

Table 1: The Euclidean distance statistic d∗N and its corresponding p value for the first-digit distribu-
tion of twenty different groups of counts discussed by Benford in his original paper (Benford, 1938).
Also indicated are the total number of counts for each group, N , and the normalized Euclidean dis-
tance d∗. (Digits in parentheses at the third and fourth decimal places indicate an error on those digits
of ±1). The last two columns show the χ2 score and its corresponding p value, p(χ2).
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The data considered by Benford were collected from many different and disparate fields, from
random numbers appearing within the covers of the same magazine to the values of physical con-
stants [the rows K and S refer to an amalgamation of the observations of the first-digit frequencies
of reciprocal and roots (row K) and powers and factorial (row S) of positive natural numbers]. At a
first glance, the data suggest a certain regularity in the distribution of the first-digit, as it is evident
in Figure 1, and as it was evident to Benford himself to the point that he claimed that “as no definite
exceptions have ever been observed among true variables, the logarithmic law for large numbers ev-
idently goes deeper among the roots of primal causes than our number system unaided can explain”.

Surprisingly enough, however, half of the cases considered by Benford do not conform to Ben-
ford’s law at a significance level of 0.10. Moreover, 40% do not conform at a significance level of 0.05
and one quarter do not conform at a significance level of 0.001.

The reasons for a non-conformance to Benford’s law can be disparate. As stressed by Benford’s
himself (Benford, 1938), Benford’s law “applies particularly to those outlaw numbers that are without
known relationship rather than to those that individually follow an orderly course; and therefore the
logarithmic relation is essentially a Law of Anomalous Numbers”. Thus, groups E, H, J, and S do not
comply to Benford’s law probably because the underlying distributions of numbers do not satisfies
Benford’s requirement of “non-orderliness”.

Another possibility is that the range of data is not sufficiently large to ensure conformance to
Benford’s law, which holds in the limit of an infinite range of data (Benford, 1938). This is probably
the case of group C. In fact, if one considers the values of the physical constants as reported in Lide
(2002), whose values extend on more than about 68 decades, one finds full conformance to Benford’s
law (see the bottom panel of Figure 1). In this case, we have N = 207, d∗ = 0.0550, d∗207 = 0.8196, and
p = 0.55(8).

Groups B and K are the groups with the highest number of counts. A possible reason for the
non-conformance in the case could be the enormous power of statistical tests for large N , which
makes them too rigid to assess the goodness-of-fit well. This problem, and a possible solution, will
be discussed in Sec. III.

It is worth observing that the use of the Cho-Gaines’ normalized Euclidean distance d∗ together
with Goodman’s rule of thumb for compliance to Benford’ law, d∗ < 0.25, would give a compliance
to Benford’s law for all groups of data in Table 1. Such a compliance is highly questionable. For
example, consider group D and J. Both groups consist of a number of counts of about 100, but while
D “seems” to follow Benford’s law, J displays a big departure from it (see Figure 1).

Also, group B “seems” to display a high level of “Benfordness”, but the use of the Euclidean
distance statistic excludes the compliance to Benford’s law at a significance level of 0.001.

This sort of “visual Benfordness” is then not reliable. This can be also understood by using the
Pearson’s χ2 statistic. In the last two columns of Table 1, we show the value of the χ2 and its cor-
responding p value, p(χ2), for each group of count discussed by Benford (for the case of the values
of the physical constants discussed above, we have χ2 = 5.6983, and p(χ2) = 0.6810). As it is clear,
the p values of the χ2 statistic differ, sometimes substantially, from the ones of the Euclidean distance
statistic. This strongly indicates that the use of the χ2 statistic for checking the conformance of a set of
data to Benford’s law is not completely reliable and should be used only for “qualitative” analyses.
This is not surprising since, as it is well known, the χ2 test has been designed for testing continuous
distributions and is generally conservative for testing discrete ones, such as Benford’s law (Noether,
1963).

In order to better understand the above two issues, the incorrectness of Goodman’s rule of thumb
and visual Benfordness, we have prepared six first-digit mock distributions with different total num-
ber of counts N . These are presented in Table 2 and visualized in Figure 2.

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54
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Figure 2: Graphical representations of the first-digit (mock) distributions in Table 2. The (blue) con-
tinuous lines represent Benford’s law.

Group N f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) d∗ d∗N p χ2 p(χ2)

1 2500 0.280 0.200 0.136 0.088 0.074 0.070 0.068 0.044 0.040 0.0366 1.8949 0.000(7) 26.110 0.0010
2 500 0.360 0.200 0.100 0.060 0.080 0.040 0.040 0.060 0.060 0.0828 1.9190 0.000(6) 28.117 0.0005
3 100 0.150 0.090 0.250 0.050 0.110 0.180 0.080 0.008 0.010 0.2449 2.5375 0.000(0) 52.123 0.0000
4 40 0.450 0.350 0.100 0.050 0.000 0.000 0.025 0.025 0.000 0.2551 1.6718 0.00(4) 19.887 0.0108
5 20 0.300 0.400 0.150 0.150 0.000 0.000 0.000 0.000 0.000 0.2597 1.2034 0.10(2) 12.397 0.1343
6 10 0.100 0.300 0.200 0.100 0.100 0.200 0.000 0.000 0.000 0.2856 0.9361 [0.25, 0.50] 6.9145 0.5459

Table 2: The normalized Euclidean distance d∗, and the Euclidean distance statistic d∗N and its corre-
sponding p value, for six first-digit mock frequency distributions, f(d), with different total number
of counts N . (Digits in parentheses at the third and fourth decimal places indicate an error on those
digits of ±1). The last two columns show the χ2 score and its corresponding p value, p(χ2).
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A look at Figure 2 would indicate high Benfordness of group 1, a moderate Benfordness of group
2, a low-level Benfordness of group 4, and non-Benfordness of groups 3, 5, and 6. The Euclidean
distance statistic, on the contrary, shows that groups 1 and 2 do not conform to Benford’s law at a
significance level of 0.001 and group 4 at a significance level of 0.005. Moreover, groups 5 and 6 do
conform to Benford’s law at significance levels of 0.10 and> 0.25, respectively. Also, although groups
1, 2, and 3 do comply to Benford’s law according to Goodman’s rule, they do not at a significance
level of 0.001 according to the Euclidean distance statistic. Finally, while the Benfordness of groups 5
and 6 should be rejected by Goodman’s rule, the Euclidean distance statistic indicates a compliance
to Benford’s law at very high significance levels. Qualitatively, one can reach similar conclusions by
using the χ2 statistic (see the last two columns in Table 2).

Before considering group 4, it is worth noticing that Goodman’s rule of thumb was obtained by
the author by considering 40 empirical data sets displaying some visual “degree” of Benfordness
(such a degree of Benfordness was not quantified by Goodman). He found that 95% of data sets
had a d∗ smaller than 0.256. So, he concluded that a value d∗ > 0.25 is a strong indication of non-
compliance to Benford’s law, independently on the total number of counts N . We already showed
that Goodman’s rule generates wrong results when applied to data sets with counts larger or smaller
than N = 40. But also when considering N around 40, one finds that Goodman’s rule is not reliable.
Indeed, let’s now consider group 4 which contains exactly 40 counts. With a d∗ value of 0.2551 and a
d∗N = 1.6718, the null hypothesis of conformance to Benford’s law cannot be rejected at a significance
level of 0.05 according to Goodman results, while it is rejected at a significance level of 0.005 by the
Euclidean distance test. In this case, then, Goodman’s rule is very conservative in rejecting the null
hypothesis. This is probably due to the fact that the 40 empirical data sets used by Goodman had
different “levels” of Benfordness.

3 The problem with very large data sets: ε-Benford’s law

The Euclidean distance and the χ2 tests, and in general all other tests used for checking the com-
pliance of a data set to Benford’s law, are very sensitive to the sample size N . In particular, they
have enormous power for large N making them too rigid to assess the goodness-of-fit well: even a
tiny deviation of the first-digit counts from Benford’s distribution will be statistically significant. The
severity of the existing tests for testing Benford’s law for large N , can be traced back to the following
reasons:

i) Benford’s law does not represent a true law of numbers;
ii) Benford’s law emerges in the limit of infinite range of the underlying distribution.
The emergence of Benford’s law from a particular sample depends on the properties of the un-

derlying distribution. However, no general criteria has be found that fully explain when and why
Benford’s law holds for a generic set of data. So, one major problem when testing for Benford’s law
is that it is not always possible to know in advance if a set of data is expected to follow it or not. This
means that the rejection/acceptance of the null can be misleading when the underlying distribution
is “close” to but not exactly Benford’s, and this regardless of data quality. This problem is exacerbated
by the increase of power of statistical tests with the sample size and, for very large sample sizes, say
N � 1000, it makes any statistical test unreliable.

Also, Benford’s law, even when it is known to hold exactly Morrow (2014); Hill (1995a,b,c),
emerges from underlying distributions that extend on infinite ranges. In real applications, how-
ever, the set of data is restricted to a finite range and, typically, to just few decades. For finite ranges,

SJS, VOL. 4, NO. 1 (2022), PP. 41 - 54
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Year N d∗ d∗N χ2 p

1994 9632 0.052 5.3 350 > 0.10
1996 11108 0.081 8.9 510 < 0.001
1998 9694 0.061 6.2 420 (0.01, 0.05)
2000 10771 0.072 7.7 670 (0.001, 0.01)
2002 10348 0.097 10 1100 < 0.001
2004 8396 0.130 12 2200 < 0.001

Table 3: The normalized Euclidean distance d∗, the Euclidean distance statistic d∗N , and the χ2 score
for the first-digit distribution of in-kind contributions for six particular election cycles discussed by
Cho and Gaines (2007). Also indicated is the total number of counts for each group, N . The last
column shows the p values of the Euclidean distance statistic for a ε-Benford’s distribution with
ε = 0.20.

then, we expect a deviation from Benford’s law even if the underlying distribution is exactly Benford.
Moreover, we expect that such a deviation becomes statistically significant at large N .

In order to overcome the problem of the enormous power of existing statistical tests for large
N , Cho and Gaines (2007) introduced the normalized Euclidean distance statistic in the attempt to
quantify the deviation of a data set from Benford’s law. However, as pointed out by the authors, the
use of this statistic can only identify possible anomalies that deserve further inspection, but does not
represent a “quantitative” statistical tool for testing Benford’s law.

To better understand this point, let us consider the data analyzed by Cho and Gaines (2007) about
the first-digit frequencies of in-kind contributions for six particular election cycles. In Table 3, we
show the normalized Euclidean distance d∗, the Euclidean distance statistic d∗N , and the χ2 score
for such distributions. Due to the extremely large values of both d∗N and χ2, the null hypothesis of
conformance to Benford’s law is rejected at any conceivable significance level for all years. The very
large number of counts for each group, of order of 105, makes the Euclidean distance and χ2 tests too
powerful to properly assess the goodness-of-fit. However, the values of the normalized Euclidean
statistic d∗, as well as those of the Euclidean statistic d∗N , indicate that the last two elections exhibit a
somewhat worse fit than their earlier counterparts (Cho and Gaines, 2007).

In the rest of this Section, we will extend the work of Cho and Gaines by making the identification
of anomalies more “quantitative”.

We first give the following definition. A random variable X , whose first-digit probability distri-
bution function is Pε(d), follows a ε-Benford’s distribution iff

∀ d ∈ {1, ..., 9} :

∣∣∣∣Pε(d)− PB(d)

PB(d)

∣∣∣∣ ≤ ε. (5)

Here, the positive parameter ε × 100% quantifies the maximum percentage deviation of the values
of the first-digit distribution of X from Benford’s law. [Notice that if a random variable X follows
a ε-Benford distribution, it automatically ε-satisfies Benford’s law in the sense specified byMorrow
(2014).]

The first-digit frequencies of in-kind contributions discussed above fail to conform to Benford’s
law even if their deviations from the law are relatively small, as confirmed by the smallness of the
normalized Euclidean distance statistic. Indeed, the underlying random variable could be “intrinsi-
cally” ε-Benford, or it became so due to the limitedness of the range of data. Whatever is the case, we
may assess the goodness-of-fit of such frequencies to ε-Benford’s law after finding the appropriate
test values of the Euclidean distance statistic for a ε-Benford distribution.
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To this end we performed a Monte Carlo simulation consisting, for each sample sizeN , of n draws
from a Benford’s distribution PB(d), with each value of PB(d) being multiplied by a (pseudo-)random
number in the interval [1 − ε, 1 + ε], thus obtaining the ε-Benford distribution Pε(d). In particular,
we considered the cases ε = 0.05, 0.10, 0.15, 0.20, 0.25, and we took n = 105 for 50 ≤ N ≤ 10000 and
n = 104 for 10000 < N ≤ 100000. We started with N = 50 and N = 100, and then we proceeded up
to 1000 by steps of 100, up to 10000 by steps of 1000, and up to 100000 by steps of 10000. We then
evaluated the Euclidean distance statistic for the ε-Benford distribution, d (ε)

N , as

d
(ε)
N =

√√√√N
9∑
d=1

[Pε(d)− PB(d)]2 . (6)

The observed probability distribution function of the Euclidean distance statistic exhibits a regular
dependence of the sample sizeN . This is apparent in the upper panels of Figure 3, where we show its

mean d (ε)
N and its standard deviation s (ε)

N as a function of the sample size N . In the middle and lower
panels of Figure 3, instead, we show the test values d (ε)

N,1−α for α = 0.10, 0.05, 0.01, and 0.001 [the

test values d (ε)
N,1−α are defined as Cdf [d

(ε)
N,1−α] = 1 − α, where Cdf [d

(ε)
N ] is the (observed) cumulative

distribution function of d (ε)
N ]. The (blue) continuous lines represent fits of the observed quantities and

are divided in two intervals, 50 ≤ N ≤ 103 and 103 ≤ N ≤ 105. All nonlinear fits can be expressed as

θ
(ε)
N =

(
a+ bN−1/2 + cN−1

)√
N, (7)

where θ (ε)
N represents any of the variables d (ε)

N , s (ε)
N , and d (ε)

N,1−α. The fitting values a, b, and c, for both
50 ≤ N ≤ 103 and 103 ≤ N ≤ 105, are shown in Table 4.

The choice of the fitting function in Eq. (7) is suggested by the behaviour of the quantities
θ

(ε)
N /
√
N , which numerically are found to be slowly decreasing function of N approaching constant

limiting values (see Figure 3). Indeed, assuming that the parameters a, b, and c remain constant for
N > 105, it follows from Eq. (7) that all quantities θ (ε)

N /
√
N approach asymptotic constant values for

a given ε,

lim
N→∞

θ
(ε)
N√
N

= θ (ε). (8)

A linear fit of these values as a function of ε gives

d (ε) = −0.0011 + 0.1960 ε, (9)
s (ε) = −0.0004 + 0.0596 ε, (10)

and

d
(ε)
0.90 = −0.0017 + 0.2791 ε, (11)

d
(ε)
0.95 = −0.0020 + 0.3033 ε, (12)

d
(ε)
0.99 = −0.0024 + 0.3410 ε, (13)

d
(ε)
0.999 = −0.0029 + 0.3717 ε. (14)

We show the limiting values θ (ε) and their corresponding linear fits in Figure 4. It is worth notic-
ing that these fits cannot be extrapolated down to ε = 0. Indeed, from the discussion in Campanelli
(2023), we expect θ (ε) → 0 in the limit ε→ 0.
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Figure 3: The mean (upper left panel), standard deviation (upper right panel), and test values (middle
and lower panels) of the Euclidean distance statistic (6) as a function of the sample size N , together
with their nonlinear fits (blue continuous lines), Eq. (7), for different values of ε. From bottom to top:
ε = 0.05, 0.10, 0.15, 0.20, and 0.25.
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d
(ε)
N

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0024 0.8429 0.1592 0.0085 0.3686 9.329
0.10 0.0090 0.7536 0.5061 0.0187 0.1252 11.10
0.15 0.0180 0.6478 0.8886 0.0285 0.0568 9.570
0.20 0.0287 0.5274 1.3311 0.0382 0.0327 7.999
0.25 0.0393 0.4382 1.5933 0.0478 0.0189 6.811

s
(ε)
N

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0009 0.2425 0.0171 0.0025 0.1275 2.058
0.10 0.0031 0.2176 0.1027 0.0055 0.0648 2.637
0.15 0.0060 0.1875 0.2099 0.0085 0.0375 2.621
0.20 0.0091 0.1596 0.3028 0.0114 0.0259 2.231
0.25 0.0121 0.1423 0.3310 0.0145 0.0095 2.259

d
(ε)
N,0.90

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0034 1.1701 0.1253 0.0120 0.5272 12.18
0.10 0.0132 1.0400 0.6570 0.0264 0.1943 14.82
0.15 0.0264 0.8842 1.2222 0.0403 0.0922 13.05
0.20 0.0412 0.7373 1.7073 0.0542 0.0480 11.12
0.25 0.0564 0.6109 2.0842 0.0679 0.0331 9.398

d
(ε)
N,0.95

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0040 1.2794 0.1662 0.0130 0.6121 12.63
0.10 0.0151 1.1325 0.7568 0.0286 0.2607 15.38
0.15 0.0291 0.9790 1.2903 0.0437 0.1328 14.28
0.20 0.0452 0.8181 1.8199 0.0588 0.0742 12.41
0.25 0.0610 0.7041 2.1113 0.0737 0.0497 10.73

d
(ε)
N,0.99

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0048 1.5143 0.1805 0.0145 0.8291 12.52
0.10 0.0180 1.3483 0.7872 0.0319 0.4373 16.38
0.15 0.0335 1.1962 1.3040 0.0488 0.2810 15.84
0.20 0.0520 1.0014 2.0509 0.0657 0.2074 13.80
0.25 0.0688 0.9084 2.1364 0.0828 0.0978 14.68

d
(ε)
N,0.999

50 ≤ N ≤ 103 103 ≤ N ≤ 105

ε a b c a b c

0.05 0.0092 1.685 0.9586 0.0158 1.1156 12.73
0.10 0.0189 1.697 0.3014 0.0342 0.7717 14.63
0.15 0.0365 1.534 0.7803 0.0528 0.5464 16.07
0.20 0.0547 1.370 1.4935 0.0712 0.4710 13.99
0.25 0.0770 1.161 2.2538 0.0902 0.2273 18.90

Table 4: The values of the best-fitting parameters a, b, and c in Eq. (7) as a function of ε, for both
50 ≤ N ≤ 103 and 103 ≤ N ≤ 105.
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Figure 4: Left panel. The limiting values (8) of the mean (upper circles) and standard deviation (lower
circles) of the Euclidean distance statistic (6) as a function of ε, together with their corresponding
regression lines (blue continuous lines), Eqs. (9) and (10), respectively. Right panel. Limiting test-
values (8) for the Euclidean distance statistic (6) as a function of ε, together with their corresponding
regression lines (blue continuous lines), Eqs. (11)-(14). From bottom to top: α = 0.1, 0.05, 0.01 and
0.001.

The mean, standard deviation, and test values of d (ε)
N grow as

√
N for large N . Accordingly,

the statistic d (ε)
N /
√
N , whose sample values are by definition independent on N , is asymptotically

independent on the sample size making its use a reliable tool for testing Benford’s law in samples
with large size. This statistic, then, solves the problem of the enormous power for large N of existing
statistical tests.

Let us now re-consider the Cho and Gaines data discussed above. These data are divided in
“homogeneous” groups, in the sense that the underlying statistical process for each group is the
same, namely an in-kind contribution cataloged by the U.S.A. Federal Election Commission. As
already noticed, these data sets do not comply to Benford’s law (see Table 3). However, we can test
the hypothesis that the data comply to a ε-Benford’s distribution. We proceed as follows. We fix the
value of ε by finding a group conforming to ε-Benford to a large significance level, let’s say, bigger
than 0.1. This is the case of the first election cycle (1994) for which d∗N = 5.3 and d (0.2)

N = 5.5. In other
words, the data relative to the 1994 election conform to a 0.20-Benford’s distribution at a significance
level of 0.1. Accordingly, we can test the null (conformity to a 0.20-Benford’s distribution) for the
other cycles. The results are shown in the last column of Table 3. While the 1998 in-kind contribution
conforms to a significance level of 0.05 and the 2000 one cannot be rejected at a significance level
of 0.001, the years 1996, 2002, and 2004 present anomalies: the conformance of the data to a 0.20-
Benford’s distribution can be rejected at a significance level grater than 0.001. It is interesting to
observe that, based on the normalized Euclidean distance statistic, Cho and Gaines (2007) found
anomalies only for the years 2002 and 2004. The use of ε-Benford’s distribution can be then used not
only to identify but also to quantify possible anomalies in homogeneous sets of data.

The use of ε-Benford distributions can be also extended to the case of “non-homogeneous” data
sets when the number of counts is large and/or the range of the data is small. An interesting ap-
plication of Benford’s law to physical and mathematical data sets was discussed by Sambridge et al.
(2010). Their data are shown in Table 5. More than 50% of the data sets considered in their study has
large number counts. In particular, groups S1, S3, S4, S6, S7, S8, S9, and S11 have values of N larger
that 103 (groups S8 and S11 also have a small range of data, of order of 102). Not surprisingly, with
the exception of S7 which well conforms to Benford’s law, these large-number-count sets have huge
values of d∗N and χ2 making the goodness-of-fit unreliable. However, they all comply to ε-Benford’s
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Set Title N Range d∗ d∗N p χ2 p(χ2) ε

S1 Geomagnetic Field 36512 1010 0.015 2.936 0. 49.90 0. 0.10
S2 Geomagnetic reversals 93 103 0.056 0.562 0.91(1) 3.608 0.8907 —
S3 Seis. wavespeeds below SW-Pacific 423776 106 0.009 6.041 0. 363.7 0. 0.04
S4 Earth’s gravity 25917 109 0.035 5.829 0. 188.7 0. 0.15
S5 Exoplanet mass 401 105 0.056 1.163 0.13(0) 10.57 0.2274 —
S6 Pulsars rotation freq. 1861 104 0.060 2.699 0. 55.03 0. 0.25
S7 Fermi space tel. γ-ray source fluxes 1451 105 0.020 0.797 0.59(5) 12.56 0.1280 —
S8 Earthquake depths 248915 102 0.027 14.14 0. 1723 0. 0.11
S9 S-A seismogram 24000 105 0.030 4.840 0. 191.1 0. 0.15
S10 Green house gas em. by country 184 104 0.030 0.421 0.98(3) 2.049 0.9795 —
S11 Glob. Temp. anom. 1880-2008 1527 102 0.045 1.828 0.00(1) 34.61 0. 0.15
S12 Fund. Phys. constants 326 104 0.058 1.088 0.19(1) 9.615 0.2931 —
S13 Global Infectious disease cases 987 106 0.046 1.419 0.02(7) 15.00 0.0592 —
S14 Geometric series 1000 1021 0.007 0.229 0.999(7) 0.417 0.9999 —
S15 Fibbonacci sequence 1000 1014 0.003 0.091 1. 0.122 1. —

Table 5: The normalized Euclidean distance d∗, the Euclidean distance statistic d∗N with its corre-
sponding p value, the χ2 score with its corresponding p value, p(χ2), of the first-digit distribution
for various physical and mathematical data sets discussed by Sambridge et al. (2010). Also indicated
are the total number of counts for each group, N , and the dynamic range of the data (max/min).
The last column shows the value of ε such that the first-digit distribution of the counts conform to a
ε-Benford’s law at a significance level of α = 0.1.

law at a significance level of α = 0.1, with values of ε ranging from 0.04 to 0.25 (see the last column
in Table 5).

4 Conclusions

Benford’s law on the distribution of the first digits of numerical data sets has been observed to arise
in multifarious classes of data, from natural sciences to finance. Compliance to Benford’s law can
be tested by using standard test statistics, such as the Pearson χ2 statistic, the “Goodman’s rule of
thumb”, and/or the recently introduced Euclidean distance statistic.

The main results of our analysis are as follows.
(i) For small and/or large number of data points, N ≤ 1000, the use of p values of the χ2 statistic

for testing Benford’s law is not completely reliable. This is because the χ2 test, although being a
very powerful tool in assessing the goodness-of-fit to any continuous distribution, it is generally
conservative for testing discrete ones, like Benford’s law. The χ2 statistic should be then used only
for “qualitative” analyses. For quantitative analyses, the Euclidean distance should be used, since the
test based on this statistic has been explicitly constructed for testing Benford’s law. The Goodman’s
rule of thumb, instead, should be always avoided when checking for the compliance to Benford’s law.
Its statistical groundlessness generates results in disagreement with both the χ2 and the Euclidean
distance tests.

(ii) We have discussed some limitations of statistical tests in assessing the goodness-of-fit to Ben-
ford’s law for very large sample sizes (N > 1000) and/or very small ranges of data, and then pro-
posed a possible solution to overcome such limitations. The solution comes from the observation that
Benford’s law is not in general a limiting distribution nor a fundamental law of numbers and then
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real distributions are often ε-Benford, in the sense that they deviate from Benford’s law at a relative
level of ε. Even a tiny deviation, however, may result in huge values of standard test statistics for
large N , making any attempt to quantify the goodness-of-fit unfeasible. We have then considered a
new statistic, the Euclidean distance statistic d (ε)

N for a ε-Benford distribution, and computed appro-
priate test values. The statistic d (ε)

N /
√
N , whose sample values are by definition independent on N ,

is asymptotically independent on the sample size, making it a natural candidate for testing Benford’s
law in samples with very large size.
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