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1 Introduction

Various phenomena that occur in the real world can be explained by statistical distributions. For
a long time, many of the common distributions (Weibull, gamma, Burr XII, Gumbel) were suffi-
cient for this purpose. However, with computer science development, more flexible distributions
have become mandatory. One way to generate new families of distribution is through techniques
to generalize existing ones. The main characteristic of these generalizations is the addition of more
parameters to their baseline distributions, thus increasing their flexibility.

The Weibull distribution is widely used in many fields, but it is not suitable for bathtub-shaped
or unimodal hazard rates. Thus, several models have been developed to extend this distribution and
increase the modeling ability, such as those in (Mudholkar and Srivastava, 1993), (Xie and Lai, 1996),
(Xie et al., 2002), (Lai et al., 2003), (Famoye et al., 2005), and (Cordeiro et al., 2010), among others.

Of the various modifications made to the Weibull distribution, the one of interest in this article
is the flexible Weibull (FW) distribution (Bebbington et al., 2007) with shape parameters α, β > 0,
cumulative distribution function (cdf)

G(x;α, β) = 1− exp
(
−eαx−

β
x

)
, x > 0,

c© INE Published by the Spanish National Statistical Institute



56 A.A. FERREIRA, G.M. CORDEIRO

and probability density function (pdf)

g(x;α, β) =

(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

)
.

For β = 0 and α = log(λ), the FW model reduces to the exponential, and then it can be regarded
as a generalization of the Weibull (Bebbington et al., 2007).

There are several extensions of the FW distribution such as those reported by (El-Gohary et al.,
2015), (El-Desouky et al., 2016), (Mustafa et al., 2016), (El-Damcese et al., 2016), (El-Desouky et al.,
2017), and (Ahmad and Iqbal, 2017).

Zografos and Balakrishnan (2009) and Ristić and Balakrishnan (2012) defined the cdf of the
gamma-G class for any parent cdf G(x) = G(x;θ) with parameter vector θ of dimension p, by (for
x ∈ IR)

F (x) = F (x; a,θ) =
γ(a,− log[1−G(x)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(x)]

0
ta−1e−tdt, (1)

where a > 0 is a shape parameter, and Γ(·) is the gamma function. For a = 1, Equation (1) reduces to
the parent G cdf.

Recently, the gamma-G family has received considerable attention in works by (Nadarajah et al.,
2015), (Alzaatreh et al., 2014), (Nadarajah et al., 2015), (Cordeiro et al., 2016), (Bourguignon and
Cordeiro, 2016), (Iriarte et al., 2017), (Guerra et al., 2017), and (David et al., 2021), among others.

The article unfolds as follows: Section 2 defines the gamma-flexible Weibull (GFW) distribution
and a linear representation for its density. The moments and generating function are reported in
Section 3. Section 4 estimates the parameters by the maximum likelihood method and conducts a
simulation study. Three real data sets are analyzed in Section 5 to show the utility of the new model.
Finally, we draw some conclusions in Section 6.

2 The GFW model and its linear representation

A random variable X follows the GFW distribution, say X ∼ GFW(a, α, β), if its cdf and pdf (omit-
ting parameters in the functions) are

F (x) =
γ
[
a, exp

(
αx− β

x

)]
Γ(a)

=
1

Γ(a)

∫ exp (αx−βx )

0
ta−1e−tdt, t > 0, (2)

and

f(x) =

(
α+ β

x2

)(
eαx−

β
x

)a
exp

(
−eαx−

β
x

)
Γ(a)

, (3)

respectively.
The FW distribution was introduced in engineering, but it can be used in several fields. So, the

GFW distribution can also be adopted in a similar manner.
The hazard rate function (hrf) of X follows from the last two expressions.
The GFW is identical to the FW distribution when a = 1. The calculations in all sections were

done using R software (R Core Team, 2020).
Figure 1 displays some plots of the density of X , which can be symmetric, right-symmetric, left-

symmetric, or bimodal. Plots of the hrf of X are reported in Figure 2, which has increasing, decreas-
ing, bathtub, and unimodal shapes.
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Figure 1: Plots of the density of X .
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Figure 2: Plots of the hrf of X .

A simple motivation for the GFW distribution follows from Zografos and Balakrishnan (2009),
where the GFW density can be approximated by the upper record value density from a sequence
of independent and identically distributed FW random variables. Further, we highlight the utility
of the proposed distribution in medical data analysis. In fact, the GFW distribution can be selected
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as the best model, especially in modeling unimodal and bimodal data of COVID-19 and cancer as
illustrated in Section 5.

Following the concept of exponentiated distributions (Cordeiro et al., 2013), the exponentiated
FW (“expFW”) cdf with power parameter δ, say EFW(α, β, δ) (for x > 0), is

Hδ(x;α, β) =
[
1− exp

(
−eαx−

β
x

)]δ
and the corresponding pdf reduces to

hδ(x;α, β) = δ

(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]δ−1
.

From Proposition 2 of Castellares and Lemonte (2015), we can write

[− ln(1− v)]c = vc
∞∑
m=0

ρm(c) vm, (4)

where c ∈ IR, |v| < 1, ρ0(c) = 1, ρm(c) = c ψm−1(m + c − 1) for m ≥ 1, and ψm(·) are Stirling
polynomials, namely

ψn−1(w) =
(−1)n−1

(n+ 1)!

[
Tn−1
n − w + 2

n+ 2
Tn−2
n +

(w + 2)(w + 3)

(n+ 2)(n+ 3)
Tn−3
n − · · ·

+ (−1)n−1 (w + 2)(w + 3) · · · (w + n)

n+ 2)(n+ 3) · · · (2n)
T 0
n

]
, (5)

where Tmn+1 = (2n+ 1−m)Tmn + (n−m+ 1)Tm−1
n are positive integers, T 0

0 = 1, T 0
n+1 = 1× 3× 5×

· · · × (2n+ 1), and Tnn+1 = 1.
From Equation (4), we can rewrite Equation (3) as (Castellares and Lemonte, 2015)

f(x; a, α, β) =

∞∑
m=0

pm hm+a(x;α, β) , (6)

where ϕ0(a) = Γ(a)−1, pm = pm(a) = ϕm(a)/(m + a), ϕm(a) = Γ(a)−1ρm(a − 1) = (a −
1) Γ(a)−1ψm−1(m + a − 2) (for m ≥ 1) can be determined from (5), and hm+a(x;α, β) denotes the
EFW density with power parameter m+ a .

Equation (6) reveals that the GFW density is a linear combination of EFW densities. So, its prop-
erties can follow from those of the EFW distribution.

3 Moments and generating function

We calculate numerically in Table 1 the first four moments, standard deviation (SD), skewness (SK)
and kurtosis (KR) of X varying a and β, with α = 0.04. The moments increase and the skewness and
kurtosis decrease if β increases for a fixed. Note that the same happen when a increases for β fixed.

If Ym+a ∼ EFW(m+ a, α, β), we write from Equation (6)

µ′r = IE(Xr) =
∞∑
m=0

pm IE
(
Y r
m+a

)
. (7)
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a = 0.1, β = 0.5 a = 0.1, β = 1.0 a = 0.1, β = 1.5 a = 0.1, β = 2.0
µ′1 0.458 0.6135 0.758 0.897
µ′2 5.786 6.4989 7.263 8.0748
µ′3 132.535 143.993 156.166 169.053
µ′4 3639.751 3919.821 4215.782 4528.010
SD 2.361 2.474 2.586 2.696
SK 9.474 8.745 8.123 7.589
KR 109.462 95.521 84.187 74.898

a = 0.5, β = 0.5 a = 0.5, β = 1.0 a = 0.5, β = 1.5 a = 0.5, β = 2.0
µ′1 2.644 3.126 3.557 3.956
µ′2 44.857 49.078 53.432 57.899
µ′3 1108.423 1189.969 1275.122 1363.795
µ′4 32176.930 34366.120 36656.030 39047.790
SD 6.153 6.269 6.385 6.500
SK 3.889 3.209 3.052 2.914
KR 15.476 14.290 13.283 12.420

a = 1.5, β = 0.5 a = 1.5, β = 1.0 a = 1.5, β = 1.5 a = 1.5, β = 2.0
µ′1 10.936 11.709 12.994 13.561
µ′2 257.408 271.386 298.996 312.685
µ′3 7526.057 7908.050 8692.924 9095.371
µ′4 248547.900 261244.500 287697.100 301449.900
SD 11.738 11.588 11.408 11.347
SK 1.049 1.019 0.960 0.932
KR 3.218 3.200 3.143 3.113

Table 1: Numerical results for the GFW model.

Further, the rth moment of the EFW distribution is

IE(Y r
m+a) = (m+ a)

∫ ∞
0

xr
(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]m+a−1
,

where
[
1− exp

(
−eαx−

β
x

)]m+a−1
can be written as

[
1− exp

(
−eαx−

β
x

)]m+a−1
=
∞∑
j=0

(−1)j Γ(m+ a)

j! Γ(m+ a− j) exp
(
−jeαx−βx

)
,

and then

IE(Y r
m+a) =

∞∑
j=0

(−1)j Γ(m+ a+ 1)

j! Γ(m+ a− j)

∫ ∞
0

xr
(
α+

β

x2

)
eαx−

β
x

× exp
[
−(j + 1)eαx−

β
x

]
dx .
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By using power series for exp
[
−(j + 1)eαx−

β
x

]
and e2(k+1)αx gives

IE(Y r
m+a) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
∫ ∞

0
xr+i

(
α+

β

x2

)
e−(k+1)αx− (k+1)β

x dx. (8)

Based on the result (3.471 9) in Gradshteyn and Ryzhik (2007), we obtain

IE(Y r
m+a) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
[

2α

(
β

α

) ν+1
2

Kν+1

(
2(k + 1)

√
αβ
)

+ 2β

(
β

α

) ν−1
2

Kν−1

(
2(k + 1)

√
αβ
)]
, (9)

where

ν = r + i, Kν(z) =
πcsc(πν)

2
[I−ν(z)− Iν(z)] , and Iν(z) =

∞∑
`=0

1

Γ(`+ ν + 1)`!

(z
2

)2`+ν

are the modified Bessel functions of the second and first kind, respectively (for ν 6∈ Z).
Substituting (9) into (7) gives the rth moment of the GFW distribution.
In a similar manner, the rth incomplete moment of X , say mr(s) =

∫ s
0 x

r f(x) dx, follows as

mr(s) =
∞∑

m,j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i pm Γ(m+ a+ 1)αi

j! k! i! Γ(m+ a− j)

×
∫ s

0
xr+i

(
α+

β

x2

)
e−(k+1)αx− (k+1)β

x dx .

From Theorem 2 of Chaudhry and Zubair (1994), we obtain (for r ≥ 1)

mr(s) =
∞∑

m,j,k,i=0

(−1)j+k (j + 1)k 2i pm Γ(m+ a+ 1)

j! k! i! (k + 1)r Γ(m+ a− j)αr

×
{
γ
[
(k + 1)αs; (r + i+ 1), (k + 1)2αβ

]
(k + 1)

+ (k + 1)γ
[
(k + 1)αs; (r + i− 1), (k + 1)2αβ

]
αβ

}
,

where γ(x; a, b) =
∫ x

0 t
a−1 e−t−b/tdt is the generalized lower incomplete gamma function.

The generating function (gf) of X can be written from (6) as

M(t) =

∞∑
m=0

pmMm+a(t) , (10)
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where Mm+a(t) is the gf of Ym+a. The gf of the EFW distribution is

Mm+a(t) = (m+ a)

∫ ∞
0

etx
(
α+

β

x2

)
eαx−

β
x exp

(
−eαx−

β
x

) [
1− exp

(
−eαx−

β
x

)]m+a−1
.

Following a similar algebra as for Equation (8) and again the result (3.471 9) (Gradshteyn and
Ryzhik, 2007), we obtain (for t < α)

Mm+a(t) =

∞∑
j,k,i=0

(−1)j+k (j + 1)k 2i (k + 1)i αi Γ(m+ a+ 1)

j! k! i! Γ(m+ a− j)

×
{

2α

[
(k + 1)β

(k + 1)α− t

] i+1
2

Ki+1

(
2
√

[(k + 1)α− t] (k + 1)β
)

+ 2β

[
(k + 1)β)

(k + 1)α− t

] i−1
2

Ki−1

(
2
√

[(k + 1)α− t](k + 1)β
)}

. (11)

Substituting Equation (11) into (10) gives the gf of the GFW distribution.

The quantile function (qf) of the FW distribution is given by (Bebbington et al., 2007)

QFW(u;α, β) =
1

2α

{
log [− log(1− u)] +

√
{log[− log(1− u)]}2 + 4αβ

}
.

By inverting (2) and using results in Nadarajah et al. (2015), the qf of X follows as (for 0 < u < 1)

QGFW(u; a, α, β) =
1

2α

{
log{Q−1[a, (1− u)]}+

√
{log[Q−1(a, 1− u)]}2 + 4αβ

}
, (12)

where Q−1(a, u) is the inverse function of Q(a, x) = 1− γ(a, x)/Γ(a).
Approximations for the skweness and kurtosis ofX can be based on quantile measures from (12).

Let QGFW(u) = QGFW(u; a, α, β). The Bowley’s skewness (Kenney and Keeping, 1962) is

B(a, α, β) =
QGFW(3/4) +QGFW(1/4)− 2QGFW(1/2)

QGFW(3/4)−QGFW(1/4)
,

whereas the Moors kurtosis (Moors, 1988) is

M(a, α, β) =
QGFW(7/8)−QGFW(5/8)−QGFW(3/8) +QGFW(1/8)

QGFW(6/8)−QGFW(2/8)
.

Plots of these quantities for some choices of α and β as functions of a are reported in Figure 3.
Note that the skewness increases when a goes to one and decreases from this value. The kurtosis
decreases rapidly for small values of a and stabilizes when a increases.

An application of (12) using the first incomplete moment m1(s) refers to the Bonferroni and
Lorenz curves defined by (for a given probability π)

B(π) =
m1(q)

πµ′1
and L(π) =

m1(q)

µ′1
,

respectively, where q = QGFW(π). Plots of these curves versus π for some choices of a (with α = 0.01
and β = 15) are displayed in Figure 4.
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Figure 3: Skewness (a) and kurtosis (b) of X versus a.
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Figure 4: Bonferroni and Lorenz curves of X .

4 Estimation and Simulations

The log-likelihood function for θ = (a, α, β)> given the data set x1, . . . , xn from X is

`(θ) =

n∑
i=1

log

(
α+

β

x2
i

)
+ a

n∑
i=1

(
αxi −

β

xi

)
+

n∑
i=1

(
−eαxi−

β
xi

)
− n log[Γ(a)]. (13)
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The maximum likelihood estimate (MLE) of θ, say θ̂, can be found by maximizing Equation (13)
numerically using scripts such as optim or nlm in R, MaxBFGS in Ox, and PROC NLMIXED in SAS.

We generate 1, 000 Monte Carlo replicates for the GFW model from Equation (12) with sample
sizes n = 50, 100, 300, and 500 under three scenarios: (a, α, β) = (0.9, 2, 1.2) for scenario I; (a, α, β) =
(0.5, 1.5, 3) for scenario II; and (a, α, β) = (1.5, 0.5, 0.8) for scenario III. We use the optim script of R
to maximize (13). The averages, biases and mean square errors (MSEs) of the estimates are listed in
Table 2. The averages tend to the true parameter values and the biases and MSEs converge to zero
when n increases, which reveal that the MLEs are consistent.

Scenario I Scenario II Scenario III

n parameter Average Bias MSE Average Bias MSE Average Bias MSE
50 a 0.806 -0.094 0.261 0.630 0.130 0.246 1.480 -0.020 0.290

α 2.815 0.815 4.787 2.099 0.599 2.782 0.514 0.014 0.004
β 2.312 1.112 8.537 4.623 1.623 26.617 1.044 0.244 0.574

100 a 0.809 -0.090 0.210 0.588 0.088 0.166 1.484 -0.015 0.189
α 2.430 0.430 0.815 1.826 0.326 0.836 0.509 0.009 0.002
β 1.840 0.640 1.960 3.894 0.894 9.191 0.962 0.162 0.385

300 a 0.868 -0.031 0.137 0.556 0.056 0.085 1.497 -0.003 0.063
α 2.156 0.156 0.117 1.583 0.083 0.084 0.502 0.002 0.001
β 1.450 0.250 0.436 3.203 0.203 1.380 0.840 0.040 0.078

500 a 0.903 0.003 0.110 0.542 0.042 0.049 1.499 -0.001 0.035
α 2.096 0.096 0.061 1.542 0.042 0.044 0.501 0.001 0.001
β 1.343 0.143 0.265 3.083 0.083 0.784 0.819 0.019 0.029

Table 2: Simulation results for the GFW model.

5 Applications

We present three applications of the new model and compare it to other distributions: exponenti-
ated Weibull (EW) (Mudholkar and Srivastava, 1993), modified Weibull (MW) (Lai et al., 2003), beta
Weibull (BW) (Famoye et al., 2005), FW, Kumaraswamy Weibull (KwW) (Cordeiro et al., 2010), and
Kumaraswamy Burr XII (KwBXII) (Paranaíba et al., 2013).

The best model is chosen based on Cramér-von Mises (W ∗), Anderson-Darling (A∗), Akaike in-
formation criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information cri-
terion (BIC), and Hannan-Quinn information criterion (HQIC). The MLEs, standard errors (SEs), and
the statistics are found using the AdequacyModel script (Marinho et al., 2019) of R software.

5.1 Failure times

The failure times of 50 components (per 1000h) are (Murthy et al., 2004): 0.036, 0.058, 0.061, 0.074,
0.078, 0.086, 0.102, 0.103, 0.114, 0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538, 0.570,
0.574,0.590, 0.618, 0.645, 0.961, 1.228, 1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931,
4.073, 4.393, 4.534, 4.893, 6.274, 6.816,7.896, 7.904, 8.022, 9.337, 10.940, 11.020, 13.880, 14.730, 15.080.

SJS, VOL. 4, NO. 1 (2022), PP. 55 - 71
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Table 3 gives some descriptive statistics. The mean is greater than the median, and then the data
are right-skewed and leptokurtic.

Mean Median SD Variance Skewness Kurtosis Min. Max.
3.3430 1.4140 4.1395 17.1350 1.4167 4.0846 0.0360 15.0800

Table 3: Descriptive statistics for failure times.

Table 4 reports the MLEs and their SEs (in parentheses). The MW, EW, KwW, and BW models
have higher SEs related to their estimates, whereas the GFW, FW, and KwBXII models have accurate
estimates.

Table 5 indicates that the GFW model gives the best fit to the data since it has the lowest statistics
among all models. The generalized likelihood ratio (GLR) test (Vuong, 1989) is used to compare
the GFW model against the FW (GLR = 3.911), MW (GLR = 3.503), EW (GLR = 3.455), KwW
(GLR = 3.372), KwBXII (GLR = 3.452), and BW (GLR = 3.450) models for a significance level of
5%. These results show that the GFW distribution provides the best fit to the current data.

The plots of the estimated densities and estimated survival functions for the most competitive
models are shown in Figure 5. The GFW distribution provides the closest approximations to the
histogram and empirical survival function, which shows its utility for real-life applications.

Model MLEs (SEs)

GFW (a, α, β) 1.362 0.109 0.126
(0.190) (0.013) (0.033)

FW (α, β) 0.099 0.183
(0.012) (0.034)

MW (α, λ, β) 0.496 0.034 0.562
(0.099) (0.025) (0.098)

EW (α, λ, β) 0.290 0.770 0.785
(0.681) (0.990) (1.546)

KwW (a, b, α, β) 0.118 2.368 4.551 0.046
(0.024) (1.555) (0.099) (0.025)

KwBXII (a, b, c, k, s) 0.121 2.199 4.381 1.193 21.015
(0.019) (0.477) (0.147) (0.217) (0.125)

BW (a, b, α, β) 0.708 0.703 0.412 0.819
(1.392) (1.460) (1.575) (1.057)

Table 4: Findings from the fitted models to failure times.

5.2 COVID-19

The numbers of deaths from COVID-19 in 83 Illinois counties in the United States through De-
cember 2021 are: 169, 13, 28, 91, 13, 107, 4, 41, 31, 89, 46, 57, 108, 146, 35, 30, 32, 156, 38, 52, 21, 113, 73,
59, 130, 93, 10, 40, 101, 25, 36, 16, 15, 95, 90, 101, 21, 150, 57, 32, 34, 127, 184, 38, 69, 115, 78, 121, 165, 24,
53, 58, 72, 15, 38, 108, 85, 104, 39, 110, 82, 16, 58, 7, 15, 7, 107, 67, 74, 14, 8, 56, 29, 124, 52, 19, 72, 30, 66,
34, 196, 201, 98. See https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker.
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Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.042 0.257 193.850 194.372 199.586 196.035
FW 0.079 0.414 195.846 196.101 199.670 197.302
MW 0.130 0.850 208.727 209.249 214.463 210.912
EW 0.150 0.946 210.713 211.234 216.449 212.897
KwW 0.131 0.861 210.706 211.595 218.355 213.619
BW 0.149 0.942 212.696 213.585 220.344 215.608
KwBXII 1.132 0.870 213.086 214.450 222.646 216.726

Table 5: Adequacy measures for the models fitted to failure times.
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Figure 5: (a) Estimated densities of three models; (b) empirical and estimated survival functions of
the models.

Table 6 shows some descriptive statistics for these data. The skewness is positive, and the kurtosis
indicates mesokurtic distribution. The MLEs and their SEs (in parentheses) reported in Table 7 reveal

Mean Median SD Variance Skewness Kurtosis Min. Max.
67.8670 57.0000 48.3850 2341.1 0.8198 2.9783 4 201

Table 6: Descriptive statistics for COVID-19 data.

that the GFW, FW, and KwW distributions have accurate estimates, and the other ones have high SEs
relative to their estimates. The results in Table 8 indicate that the GFW model has the lowest values
of the criteria, so it can be chosen as the best model. Additionally, the GLR test also reveals that the
GFW model is better than the FW (GLR = 3.383), MW (GLR = 3.961), EW (GLR = 2.925), KwW
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(GLR = 2.473), KwBXII (GLR = 3.502), and BW (GLR = 4.698) models for a significance level of
5%.

Figure 6 reports plots of the estimated densities and estimated cumulative functions for the most
adequate models. The fit of the new distribution is closer to the histogram and empirical cumulative
function than those of the other distributions. So, these results support that the GFW distribution is
better suited to the current data.

Model MLEs (SEs)

GFW (a, α, β) 1.702 0.010 14.005
(0.253) (0.001) (4.458)

FW (α, β) 0.008 32.812
(0.001) (4.290)

MW (α, β, λ) 0.005 0.003 1.161
(0.002) (0.002) (0.116)

EW (α, β, λ) 0.013 1.418 0.986
(0.005) (0.503) (0.574)

KwW (a, b, α, β) 1.333 0.117 1.336 0.069
(0.083) (0.055) (0.039) (0.019)

KwBXII (a, b, c, k, s) 10.526 72.271 0.327 1.393 40.836
(25.224) (95.623) (0.401) (2.142) (122.510)

BW (a, b, α, β) 3.697 3.665 0.011 0.615
(1.303) (1.943) (0.006) (0.120)

Table 7: Findings from the fitted models to COVID-19 data.

Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.034 0.241 855.333 855.637 862.590 858.248
FW 0.095 0.596 859.516 859.666 864.353 861.459
MW 0.057 0.348 858.767 859.071 866.024 861.682
EW 0.059 0.351 858.690 858.994 865.946 861.605
KwW 0.056 0.335 860.250 860.763 869.925 864.137
BW 0.088 0.544 863.876 864.389 873.551 867.763
KwBXII 0.083 0.508 864.870 865.649 876.964 869.728

Table 8: Adequacy measures for the models fitted to COVID-19 data.

5.3 Laryngeal cancer

The data set corresponds to the lifetime (in months) of 90 male patients with laryngeal cancer. The
data are (Colosimo and Giolo, 2006): 0.6, 1.3, 2.4, 3.2, 3.3, 3.5, 3.5, 4.0, 4.0, 4.3, 5.3, 6.0, 6.4, 6.5, 7.4, 2.5,
3.2, 3.3, 4.5, 4.5, 5.5, 5.9, 5.9, 6.1, 6.2, 6.5, 6.7, 7.0, 7.4, 8.1, 8.1, 9.6, 10.7, 0.2, 1.8, 2.0, 3.6, 4.0, 6.2, 7.0, 2.2,
2.6, 3.3, 3.6, 4.3, 4.3, 5.0, 7.5, 7.6, 9.3, 0.3, 0.3, 0.5, 0.7, 0.8, 1.0, 1.3, 1.6, 1.8, 1.9, 1.9, 3.2, 3.5, 5.0, 6.3, 6.4,
7.8, 3.7, 4.5, 4.8, 4.8, 5.0, 5.1, 6.5, 8.0, 9.3, 10.1, 0.1, 0.3, 0.4, 0.8, 0.8, 1.0, 1.5, 2.0, 2.3, 3.6, 3.8, 2.9, 4.3.

Some descriptive statistics in Table 9 reveal that the data are right-skewed and platykurtic. For
these data, we compare the GFW distribution with other models that also have the bimodal shape,
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Figure 6: (a) Estimated densities of three models; (b) empirical and estimated cumulative functions
of the models.

namely, the Odd log-logistic flexible Weibull (OLLFW) (Prataviera et al., 2018), extended Weibull log-
logistic (EWLL) (Abouelmagd et al., 2019), Marshall-Olkin flexible Weibull (MOFW) (Mustafa et al.,
2016), and FW.

Mean Median SD Variance Skewness Kurtosis Min. Max.
4.197 4 2.612 6.901 0.343 2.367 0.1 10.700

Table 9: Descriptive statistics for laryngeal cancer data.

The MLEs and their corresponding SEs (in parentheses) in Table (10) show that the GFW, OLLFW,
MOFW, and FW distributions have accurate estimates. The GFW distribution has the lowest values
of the adequacy measures in Table (11) and can provide a better fit than the other distributions. The
GLR test confirms that the GFW distribution fits the current data better than the OLLFW (GLR =
4.657), EWLL (GLR = 3.741), MOFW (GLR = 11.556), and FW (GLR = 3.603) distributions for a
significance level of 5%. The plots in Figure 7 also support our claim.

6 Conclusions

We introduced a new versatile distribution called the gamma flexible Weibull and provided some
of its properties. A simulation study demonstrated that the maximum likelihood estimates of the
parameters are consistent. Three real applications showed that the new distribution is extremely
competitive to other lifetime models for unimodal and bimodal medical data.
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Model MLEs (SEs)

GFW (a, α, β) 2.527 0.201 0.197
(0.223) (0.012) (0.070)

OLLFW (a, α, β) 0.359 0.288 2.869
(0.053) (0.023) (0.106)

EWLL (λ, α, β) 0.072 0.925 21.689
(0.459) (0.457) (135.256)

MOFW (a, α, β) 6.118 0.188 0.453
(1.528) (0.011) (0.142)

FW (α, β) 0.142 1.286
(0.012) (0.198)

Table 10: Findings from the fitted models to laryngeal cancer data.

Model W ∗ A∗ AIC CAIC BIC HQIC

GFW 0.035 0.211 414.251 414.530 421.751 417.275
OLLFW 0.310 1.744 440.411 440.690 447.910 443.435
EWLL 0.148 0.913 425.014 425.293 432.514 428.038
MOFW 0.048 0.278 415.136 415.415 422.635 418.160
FW 0.564 3.218 462.138 462.275 467.137 464.154

Table 11: Adequacy measures for the models fitted to laryngeal cancer data.
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Figure 7: (a) Estimated densities of three models; (b) empirical and estimated survival functions of
the models.
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