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Abstract:
In modeling complicated real-life scenarios, one objective is to capture the dependence being

observed. Consequently, conditional specification is a worthy alternative to the joint-distribution
models. Since its’ inception, the use of divergence measures have been instrumental in determining
the closeness between two probability distributions, especially when joint distributions are specified
by the corresponding conditional distributions. Conditional specification of distributions is a devel-
oping area with several applications. This work gives an overview of a variety of divergence mea-
sures including, but not limited to, Kullback-Leibler divergence measure, Power-divergence statistic,
Hellinger distance along with some newly developed divergence measures and its role in addressing
various compatible conditions in search for a most-nearly compatible for a finite discrete case, and
also identifying compatibility under conditional and marginal information under some additional in-
formation in the form of marginal and/or conditional summary. Finally, we provide some numerical
examples to illustrate each of the scenarios.

Keywords: ncompatible conditionals, divergence measures, iterative algorithm, conditional specifi-
cation, near compatibility
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1 Introduction

The problem of determining whether two families of conditional distributions are compatible or
minimally incompatible has been considered by several authors and the problem is well established
in the literature. For an excellent survey on this topic, an interested reader is referred to the scholarly
works by Arnold and Press (1989) and Arnold et al. (1999) and the references cited therein. A non-
exhaustive list of pertinent references can be cited as follows, for example, in the works by Gelman
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22 I. GHOSH

and Speed (1993), and Arnold and Gokhale (1994, 1998). Arnold et al. (1992) provided a useful survey
of distributions being obtained in such a fashion. Several alternative approaches exist in the literature
with regard to the problem of determining the possible compatibility of two families of conditional
distributions, for example in the works of Arnold and Press (1989); Arnold and Gokhale (1994);
Cacoullos and Papageorgiou (1983); Wesolowski (1996). In addition, the problem of determining
most nearly compatible distributions, in the absence of compatibility, has been addressed (Arnold
and Gokhale, 1998; Arnold et al., 1999, 2001). In this paper, our our main objective is concentrated on
cases in which the conditional specifications are incompatible. In addition, we envision a scenario in
which case, from our informed expert and/or practitioner who is working in this field has provided
a set of additional information in the form of conditional moments/percentiles; marginal moments
etc. We want to examine to what extent such amount of additional information is compatible with
the given two conditional probability matrices in search for a most nearly compatible (equivalently
minimally incompatible) probability distribution. It is safe to say that the problem has been explored
by Arnold et al. (2001) in which the authors derived this problem as a set of non-linear equations
involving some constraints.

Our search for a compatible P in terms of equations subject to inequality constraints is based on
the fact that we really need to find one compatible marginal, say that corresponding to the random
variable X , and we consider the fact that when this is combined with B will give us P. However,
in this paper, we look at a different objective which is not discussed in Arnold et al. (2001). Here,
we explore the applicability of several measures of divergence (alias pseudo-distance measures) in
finding a most nearly compatible distributions by incorporating the additional sets of information
along with the complete specification of two conditionals. For an excellent survey on the use of
divergence measures in various aspects of distribution theory and associated statistical inference,
one is suggested to take a look at the book by Pardo (2006).

In particular, we examine the relative performance of these measures of divergence based on at
what stage of iterative algorithm in search for a most nearly compatible P , the adopted procedure
converges based on a user defined level of precision which is described later. Needless to say, compat-
ible conditional and marginal specifications of distributions are of fundamental importance in model-
ing scenarios. Moreover in Bayesian prior elicitation contexts, inconsistent conditional specifications
are to be expected. In such situations interest will center on most nearly compatible distributions.

The remainder of the paper is organized as follows. In Section 2, we provide some basic prelim-
inaries regarding compatibility of two discrete conditionals. Section 3 deals with various necessary
conditions for compatibility. In Section 4, we discuss the role of pseudo-distance measures in iden-
tifying a most nearly compatible probability distribution starting from two given conditional prob-
ability matrices under a finite discrete set-up. In Section 5, various methods of finding most nearly
compatible distributions are discussed. Section 6 provides an overview on the topic of using pseudo-
divergence measures in the presence of additional marginal and/or conditional information. Several
illustrative examples are provided in Section 7. Finally, some concluding remarks are presented in
Section 8.

2 Basic preliminaries

LetA andB be two (I×J) matrices with non-negative elements such that
∑I

i=1 aij = 1, ∀j = 1, . . . , J

and
∑J

j=1 bij = 1, ∀i = 1, 2, . . . , I . Without loss of generality, it can be assumed that I ≤ J. Matrices
A and B are said to form a compatible conditional specification for the distribution of (X,Y ) if there
exists some (I × J) matrix P with non-negative entries pij and with

∑I
i=1

∑J
j=1 pij = 1 such that,
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for every (i, j), aij =
pij
p.j

and bij =
pij
pi.
, where pi. =

∑J
j=1 pij and pi. =

∑I
i=1 pij . If such a matrix

P exists, then, if we assume that pij = P (X = xi, Y = yj), i = 1, 2, · · · , I, j = 1, 2, · · · , J, we
will have aij = P (X = xi|Y = yj), i = 1, 2, · · · , I, j = 1, 2, · · · , J, and bij = P (Y = yj |X = xi),
i = 1, 2, · · · , I, j = 1, 2, · · · , J. Equivalently, A and B are compatible if there exist stochastic vectors
τ = (τ1, τ2, · · · , τJ) and η = (η1, η2, · · · , ηI) such that

aijτj = bijηi,

for every (i, j). In the case of compatibility, η and τ can be readily interpreted as the resulting marginal
distributions of X and Y, respectively. For any probability vector η = (η1, η2, . . . , ηI) , pij = bijηi is a
probability distribution on the IJ cells. So, the conditional probability matrix, denoted by A, and its
elements (aij) will be given by

aij =
pij
I∑
s=1

psj

=
bijηi
I∑
s=1

bsjηs

, (1)

for every i, j. If A and B are compatible, then

aij

I∑
s=1

bsjηs = bijηi.

We then have

τj =

I∑
s=1

bijηs,∀j = 1, . . . , J.

In this case, the expressions given in (1) can be rewritten as

aij

I∑
s=1

bsjηs − bijηi = 0.

3 Compatibility conditions

Conditions for compatibility are listed in the following theorems which are due to Arnold and his
co-authors.

Suppose that A and B have identical incidence sets then they are compatible if and only if either
of the following two conditions hold.

(a) There exist stochastic vectors ~τ = (τ1, τ2, ...., τI) and ~η = (η1, η2, ...., ηJ) such that ηjaij =
(τibij),∀i, j. In the case of compatibility, the vectors ~τ and ~η can readily interpreted being pro-
portional to the marginal distributions of X and Y respectively.

(b) There exists vectors ~u and ~v for which dij =
aij
bij

= uivj ,∀i, j ∈ N.

This suggests the use of log-linear models to fit the matrix D. Indeed, if the log-linear model has
all interactions equal to zero, then we have compatibility. Otherwise, A and B are incompatible.
IfN = {1, 2, ...I}×{1, 2, ...J}, i.e; if all the entries inA andB are positive, then we have the following
theorem given by due to Arnold and Gokhale (1994).
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1. A and B are compatible iff they have identical uniform marginal representations(UMRs)
(Mosteller, 1968).

2. A and B are compatible iff all cross product ratios of A are identical to those of B.

Note: Some restrictions on the common incidence set of A and B is necessary for the above theo-
rem. For example if we consider

A =

 1/2 1/2 0
0 1/2 1/2

1/2 0 1/2


and B =

 1/3 2/3 0
0 1/3 2/3

2/3 0 1/3


It may be verified here here thatA andB have equal cross product ratios(there are no positive 2×2

submatrices)and have identical uniform marginal representations but A and B are not compatible.
Compatibility of A and B of course does not confirm a unique compatible matrix P. The simplest
sufficient condition is positivity, i.e; (aijbij) ≥ 0 and ∀i, j.

4 Measures of divergence

In this section, we list several useful divergence measures which will be utilized in this paper for
finding the ε-compatible distributions under the finite discrete set-up. In addition, we provide some
useful relationships among these divergence measures. Some of these results have been indepen-
dently derived and discussed in Ghosh and Sunoj (2024) and Borzadaran and Amini (2010) in the
context of copula-based divergence measures. We begin our discussion with the power divergence
statistics as a measure of divergence, for pertinent details, see Cressie and Read (1984). A divergence
measure between two probability distributions p and q (which are of the same dimension) returns
a measure of similarity or distance between them. It is non-negative. It measures the divergence
between the population distribution π = (π1, π2, . . . , πk) and the uniform distribution

(
1
k , . . . ,

1
k

)
,

where a value closer to zero represents a wider divergence from the uniform distribution. A natu-
ral generalization, when considered in this way, is to define a measure of divergence between two
general distributions. This concept was first considered by Kullback (1959) in his directed diver-
gence measure. It was followed up by Arnold and Gokhale (1994, 1998) while considering minimum
incompatibility via the K-L criterion. It is of the form

K
(
p : q

)
=

k∑
i=1

pi log2

(
pi
qi

)
, (2)

where p and q are two discrete probability distributions defined on the (k − 1) dimensional simplex

∆k =

{
π : πi ≥ 0; i = 1, . . . , k;

k∑
i=1

πi = 1

}
.

Here, we adopt the convention that pi log2

(
pi
qi

)
= 0 when pi = 0 and for any 0 ≤ qi ≤ 1. A family

of power divergence statistics indexed by λ ∈ R for p = (p1, p2, . . . , pk), q = (q1, q2, . . . , qk) can be
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defined as

Iλ
(
p : q

)
=

1

λ(λ+ 1)

k∑
i=1

pi

[(
pi
qi

)λ
− 1

]
(3)

with the convention pi = 0 whenever qi = 0. Note that (3) generalizes (2) in the same way the Rényi
entropy (Rényi, 1961) generalizes the Shannon entropy (Shannon, 1951).

1. Considering the fact that a matrix can be written as an array of column vectors, we define the
power divergence statistic for matrices A and B as:

D1 = Iλ (pij : aijp·j) + Iλ (pij : bijpi·)

=
1

λ(λ+ 1)

 I∑
i=1

J∑
j=1

pij

((
pij
aijp·j

)λ
− 1

)
+

I∑
i=1

J∑
j=1

pij

((
pij
bijpi·

)λ
− 1

) ,
where λ ∈ R is a parameter. The power divergence statistic is undefined for λ = −1 or λ = 0.
However, if we define these two cases as continuous limits of D1 for λ → −1 and λ → 0, then
D1 is continuous in λ.
The name power divergence derives from the fact that the statistic D1 measures the divergence
of pij from (aijp·j) and (bijpi·) through a weighted sum of powers of the terms

(
pij
aijp·j

)
and(

pij
bijpi·

)
for all (i, j) ∈ N . We want to minimize D1 with respect to

∑ ∑
(i,j)∈N

pij = 1.

Note: On the choice of λ

In the power divergence statistic, λ is a parameter that can take any real value. A natural
question that arises here is: what should be the optimum choice of λ? There are some conflicting
recommendations regarding which value of λ results in the optimal test statistic. In all our
examples of iterative study discussed in Section 4 later, we find that the rate of convergence is
very slow for most values of λ. For example, for λ = 0.2, 0.3 and 0.5, the iterative procedure
for the divergence measure Dλ converges at n = 20, 27 and 34, respectively. For negative
choices of λ, D1 is quite big, and moreover the resulting matrix is not a probability matrix.
A future work will focus on providing practical guidelines about how to choose λ and also
to investigate the sensitivity of solutions in addition to the rate of convergence) when different
values of λ’s are used in its’ permissible range. In the next, we provide a collection of divergence
measures which has been utilized to obtain the ε-compatible distribution(s) under the finite
discrete set-up. For pertinent details, see Ghosh (2011), Ghosh and Balakrishnan (2015), Ghosh
and Nadarajah (2017) and the references cited therein.

2. Modified Renyi’s divergence measure, see Ghosh (2011)

D2 =
1

(α− 1)

[ I∑
i=1

J∑
j=1

(aijp.j)
−1 log

(
pij
aijp.j

)α
+

I∑
i=1

J∑
j=1

(bijpi.)
−1 log

(
pij
bijpi.

)α ]
(4)

Note: Nadarajah and Zografos (2003); Zografos and Nadarajah (2005) provided a useful review
of Renyi’s entropy for different univariate and k-variate random variables.
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3. χ2 measure of divergence
It is defined as

D3 =

I∑
i=1

J∑
j=1

[(
pij
aijp.j

)2 ]
aijp.j +

I∑
i=1

J∑
j=1

[(
pij
bijpi.

)2 ]
bijpi. (5)

4. First new measure of divergence (see, Ghosh (2011))

D4 =

I∑
i=1

J∑
j=1

[(
pij

aijp.j + bijpi.
− 1

)2 ]λ
, (6)

where λ > 0 is a constant.

5. Second new measure of divergence (see, Ghosh (2011))

D5 =

I∑
i=1

J∑
j=1

(√
pij −

√
aijp.j

)2
+

I∑
i=1

J∑
j=1

(√
pij −

√
bijp.j

)2
. (7)

Note: It is to be noted that if the two conditional matrices A and B are compatible then each of these
measures will be equal to zero.

5 Available methods of obtaining minimally incompatible distributions

In this section, we describe the idea of minimal incompatibility of two given conditional distribu-
tions, and then explain some methods of finding minimally incompatible distributions. For pertinent
details, see Arnold et al. (1999).

5.1 ε-Compatibility

Suppose, we do not insist on precise compatibility, and instead wish to have pij to be approximately
consistent with two given conditional probability matrices A and B. Let W be a weight matrix that
represents the relative importance of accuracy in determining the probabilities pij for each (i, j) . For
a given weight matrix W which might be uniform, i.e., wij = 1, ∀ (i, j) if all pairs (i, j) were equally
important, we may consider the following strategies expressed as non-linear and linear programming
problems.

(i) First method: Find a matrix P, with pij ≥ 0 ∀ (i, j) , such that

∣∣∣∣∣pij − aij
I∑
i=1

pij

∣∣∣∣∣ ≤ εwij ∀(i, j) ∈ N,∣∣∣∣∣∣pij − bij
J∑
j=1

pij

∣∣∣∣∣∣ ≤ εwij ∀(i, j) ∈ N,

with the linear constraint
∑I

i=1

∑J
j=1 pij = 1.
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(ii) Second method: Second method: Seek two probability vectors η and τ such that
|aijηj − bijτi| ≤ εwij ∀ (i, j)) ,

∑
j

ηj = 1,
∑

i τi = 1, and τi ≥ 0, ηj ≥ 0, ∀ (i, j) ∈ N.

(iii) Third method: Find a (marginal) probability vector τ ≥ 0, such that and τi ≥ 0, ∀i.

Clearly, the above methods introduce three different concepts of ε-compatibility. If we use Method
1, and if A and B are ε-compatible, then the matrix P ∗ which satisfies Eq. (1) will be said to be most
nearly compatible. If we use Method 2 and if A and B are ε-compatible, then a reasonable choice for
a most nearly compatible matrix P ∗ will be

P ∗ =
aijη

∗
j + bijτ

∗
j

2
,

where η∗j and τ∗j satisfy Eq.(2). Finally, if we use Method 3 and if A and B are ε-compatible, then
a plausible choice for a most nearly compatible P ∗ will be P ∗ = (bijτ

∗
i ), where τ∗i satisfies Eq.(3).

6 Pseudo-divergence measures under additional information

Until now, we have discussed the power divergence statistic as a measure of divergence to obtain
minimally incompatible (or equivalently ε-compatible) joint probability distributions from the set
of two conditionals. Here, we want to find a procedure from which we would like to get the joint
probability distribution from the two conditionals but with some additional information provided
on the marginal and conditional probabilities and expectations, i.e., we want to see whether a given
set of constraints involving marginal and conditional probabilities and expectations of functions are
compatible or minimally incompatible. The finite discrete case (the main focus of the paper) may be
viewed as one involving solutions of linear equations in restricted domains. We will consider cases
where the given conditional probabilities and expectations are specified. Cases of imprecise specifi-
cation will be considered later on. So far, in all divergence criteria we minimized the given function

based on only one linear constraint:
I∑
i=1

J∑
j=1

pij = 1. Instead, Suppose we are given (by our well-

informed expert engaged in this study) the following set of marginal and conditional information
(one may call this a set of precise information):

1. P (X ∈ Ai) = δi for specified sets A1, A2, . . . , An1 ,
2. P (X ∈ Bi|X ∈ Ci) = ηi, i = 1, 2, . . . , n2 for specified sets of B1, B2, . . . , Bn2 , and
C1, C2, . . . , Cn2 ,

3. E (εj (X)) = ξj , j = 1, 2, . . . , n3 for specified functions ε1, ε2, . . . , εn3 ,
4. E (ϕi (X)|φi (X) = λi) = ωi, i = 1, 2, . . . , n4 for specified functions ϕ1, ϕ2, . . . , ϕn4 and speci-

fied constants λ1, λ2, . . . , λn4 ,
5. P (νi (X) ∈ Ei| γi (X) ∈ Fi) = βi, i = 1, 2, . . . , n5 for specified functions ν1, ν2, . . . , νn5 and spec-

ified sets E1, E2, . . . , En5 and F1, F2, . . . , Fn5 .

Note that the above sets of information can be rewritten as follows.

• P (X ∈ Ai) =
∑
X∈Ai

p (X) = δi,

• P (X ∈ Bi|X ∈ Ci) = ηi if and only if
∑

X∈Bi∩Ci

p (X)− ηi
∑
X∈Ci

p (X) = 0,

SJS, VOL. 6, NO. 1 (2024), PP. 21 - 38
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• E (εj (X)) =
∑
X

εj (X) p (X) = ξj ,

• E (ϕi (X)|φi (X) = λi) = ωi if and only if
∑

φi(X)=λi

ϕi (X) p (X)− ωi
∑

φi(X)=λi

p (X) = 0,

• P (νi (X) ∈ Ei| γi (X) ∈ Fi) = βi if and only if
∑

νi(X)∈Ei∩γi(X)∈Fi

p (X)−βi

 ∑
νi(X)∈Fi

p (X)

 = 0.

Thus, if we arrange the values of the joint density p (X) of X as a vector of dimension Ω =
card(X1)× card(X2)×· · ·× card(Xk), where X = (X1, X2, . . . , Xk), then we can write every piece of
information given above in the form:

Mp = θ, (8)

where the matrix M in Eq.(8) is of order (r + 1)× Ω, assuming r pieces of information are given and
rank r + 1 ≤ Ω. The ~θ is of order (r + 1)× 1. Both M and θ are assumed to be known. The “natural”
constraint p · ~1 = 1 is incorporated in Eq.(8) by letting the first row of M consist of all unit elements
and the first element of θ equal to unity. The system in Eq.(8) is assumed to be consistent in the sense
that there exists a positive probability vector satisfying (1). If r + 1 is large, it is highly unlikely that
r+ 1 pieces of information will be compatible with the given information, in the sense that Eq.(8) has
a solution p∗ with non-negative coordinates adding up to one. In general, it would be more rational
to seek approximate equality in Eq.(8) subject to p ≥ 0 and Mp = θ. In other words, we are seeking
an almost compatible distribution.

6.1 Power divergence statistic under conditional and marginal information

Our search for a most nearly compatible distribution (equivalently ε compatible) p can be viewed
as a problem of minimizing D

(
Mp, θ

)
for a suitable distance measure D subject to the restriction

that p ≥ 0 and Mp = θ. One such reasonable distance measure is the power divergence statistic.
The determined minimum value of the objective function, in each of the examples, described later,
provides a measure of incompatibility of the given information.

In this case, we have P I×J =
(
p
1
, p

2
, . . . , p

I

)1×I
, where p

1
= (p11, p12, . . . , p1J)1×J , p

2
=

(p21, p22, . . . , p2J)1×J , and so on up to p
I

= (pI1, pI2, . . . , pIJ)1×J , and we have the linear restriction of
the form

I∑
u=1

Mtupu = θt,

for t = 1, 2, . . . , (r + 1). The power divergence statistic (PDS) in this case reduces to

D1

(
p
)

=
1

λ(λ+ 1)

I∑
u=1

[
p
u

((
p
u

aup·j

)λ
− 1

)
+ p

u

((
p
u

bupi·

)λ
− 1

)]
.

Now we consider the following Lagrangian function

F = D1

(
p
)

+

r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,
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where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. To minimize F , we consider simul-
taneous solution of

∂F

∂p
u

= 0. (9)

Consequently, the optimal value of p
u

is

p∗
u

=

((
1

(aup·j)
λ + 1

(bupi·)
λ

) 1
λ

)−1
(∑
u∈N


(

1

(aup·j)
λ

+
1

(bupi·)
λ

) 1
λ


−1)−1 .

For an iterative study, we consider the following

pn+1
u

=

(
1

(aupn·j)
λ + 1

(bupni·)
λ

) 1
λ

∑
u∈N

 1(
aup

n
·j

)λ +
1

(bup
n
i·)
λ


1
λ

,

for n = 0, 1, . . . with the initial choice of p(0)ij = 1
IJ for all (i, j) ∈ N . We may use the stopping rule for

this iterative algorithm as
∣∣∣∣D(n+1)

1

D
(n)
1

− 1

∣∣∣∣ ≤ 10−6. In all the examples we considered, our process was

found to converge for a wide range of λ.

6.2 Kullback-Leibler divergence criterion under conditional and marginal information

In this case, the K-L divergence statistic is

D2(p) =
I∑

u=1

[
au log

(
aup·j
p
u

)
+ bu log

(
bupi·
p
u

)]
.

Again, we consider the following Lagrangian function

F2 = D2

(
p
)

+
r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,

where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. To minimize F2, we consider simul-
taneous solution of

∂F2

∂p
u

= 0,

same as in (9). So, the optimal value of p
u

is

p∗
u

=

(
au+bu
1
pi·

+ 1
p·j

)
(∑
u∈N

au + bu
1
pi·

+ 1
p·j

) .

SJS, VOL. 6, NO. 1 (2024), PP. 21 - 38
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For an iterative study, we consider the following

p(n+1)
u

=

(
au+bu
1
pn
i·
+ 1
pn·j

)
∑
u∈N

au + bu
1
pni·

+ 1
pn·j


for n = 0, 1, . . . with the initial choice of p(0)ij = 1

IJ for all (i, j) ∈ N . We use the following stopping

rule
∣∣∣∣D(n+1)

2

D
(n)
2

− 1

∣∣∣∣ ≤ 10−6. Here also our iterative algorithm is convergent.

6.3 Modified Renyi’s measure of divergence under the marginal and conditional infor-
mation

Proceeding as before, in this case, the statistic will be

D3 =
1

(α− 1)

[ I∑
i=1

J∑
j=1

(aup.j)
−1 log

(
pij
aup.j

)α
+

I∑
i=1

J∑
j=1

(bupi.)
−1 log

(
pij
bupi.

)α ]
. (10)

Next, we consider the following Lagrangian function

F3 = D3

(
p
)

+

r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,

where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. Now, to minimize F3, we consider
simultaneous solution of

∂F3

∂p
u

= 0,

same as in (9). Consequently, the optimal value of p
u

is

p∗
u

=

1
aup.j

+ 1
bupi.∑ ∑

(i,j)∈N

(
1

aup.j
+

1

bupi.

) .
Subsequently, for an iterative study, we consider the following iterative algorithm

p(n+1)
u

=

1

aup
(n)
.j

+ 1

bup
(n)
i.∑ ∑

(i,j)∈N

(
1

aup
(n)
.j

+
1

bup
(n)
i.

) .

for n = 0, 1, . . . with the initial choice of p(0)ij = 1
IJ for all (i, j) ∈ N . We use the following stopping

rule
∣∣∣∣D(n+1)

3

D
(n)
3

− 1

∣∣∣∣ ≤ 10−6. Here also our iterative algorithm is convergent based on all the empirical

studies that we have made in this regard. A formal mathematical proof is still remains an open
problem.
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6.4 χ2 divergence criterion under conditional and marginal information

In this case, our test statistic reduces to

D4 =
∑ ∑

(i,j)∈N

[(
pij
aup.j

)2 ]
aup.j +

∑ ∑
(i,j)∈N

[(
pij
bupi.

)2 ]
bupi. (11)

Next, we consider the following Lagrangian function

F4 = D4

(
p
)

+

r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,

where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. Now, to minimize F4, we consider
simultaneous solution of

∂F4

∂p
u

= 0,

same as in (9). Consequently, the optimal value of p
u

will be

p∗
u

=

(
1

aup.j
+

1

bupi.

)−1[∑ ∑
(i,j)∈N

1

aup.j
+

1

bupi.

]−1
Consequently, an iterative algorithm for finding minimally compatible (alias ε-compatible) P would
be to have

p(n+1)
u

=

(
1

aup
(n)
.j

+
1

bup
(n)
i.

)−1[∑ ∑
(i,j)∈N

1

aup
(n)
.j

+
1

bup
(n)
i.

]−1
,

for n = 0, 1, . . . with the initial choice of p(0)ij = 1
IJ for all (i, j) ∈ N . We use the following stopping

rule
∣∣∣∣D(n+1)

4

D
(n)
4

− 1

∣∣∣∣ ≤ 10−6. Here also our iterative algorithm is convergent based on all the empirical

studies that we have made in this regard. A formal mathematical proof is still remains an open
problem.

6.5 Divergence measure D5 under conditional and marginal information

Here, our test statistic reduces to

D5 =
∑ ∑

(i,j)∈N

[(
pij

aup.j + bupi.
− 1

)2 ]λ
,

Next, we consider the following Lagrangian function

F5 = D5

(
p
)

+

r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,
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where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. Now, to minimize F5, we consider
simultaneous solution of

∂F5

∂p
u

= 0,

same as in (9). Consequently, the optimal value of p
u

will be

p∗
u

=
(aup.j + bupi.)

1−λ−1∑∑
(i,j)∈N (aup.j + bupi.)

1−λ−1

Based on the above optimal value, an iterative algorithm could be

p(n+1)
u

=

(
aup

(n)
.j + bup

(n)
i.

)1−λ−1

∑∑
(i,j)∈N

(
aup

(n)
.j + bup

(n)
i.

)1−λ−1 ,

for n = 0, 1, . . . with the initial choice p(0)ij = 1
IJ for all (i, j) ∈ N . We use the following stopping rule∣∣∣∣D(n+1)

5

D
(n)
5

− 1

∣∣∣∣ ≤ 10−6. Here also our iterative algorithm is convergent based on all the empirical studies

that we have made in this regard. A formal mathematical proof is still remains an open problem.

6.6 Divergence measure D6 under conditional and marginal information

Here, our test statistic reduces to

D6 =
∑ ∑

(i,j)∈N

(√
pij −

√
aup.j

)2
+
∑ ∑

(i,j)∈N

(√
pij −

√
bup.j

)2
. (12)

Next, we consider the following Lagrangian function

F6 = D6

(
p
)

+

r+1∑
t=1

τt

(
I∑

u=1

Mtupu − θt

)
,

where τt, t = 1, 2, . . . , (r + 1) are (r + 1) Lagrangian multipliers. Now, to minimize F6, we consider
simultaneous solution of

∂F6

∂p
u

= 0,

same as in (9). Consequently, the optimal value of p
u

will be

p∗
u

=
(aup.j)

2 + (bup.j)
2∑∑

(i,j)∈N

{
(aup.j)

2 + (bup.j)
2
}

Based on the above optimal value, an iterative algorithm could be
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p(n+1)
u

=

(
aup

(n)
.j

)2
+
(
bup

(n)
.j

)2
∑∑

(i,j)∈N

{(
aup

(n)
.j

)2
+
(
bup

(n)
.j

)2}

for n = 0, 1, . . . with the initial choice p(0)ij = 1
IJ for all (i, j) ∈ N . We use the following stopping rule∣∣∣∣D(n+1)

6

D
(n)
6

− 1

∣∣∣∣ ≤ 10−6. Here also our iterative algorithm is convergent based on all the empirical studies

that we have made in this regard. A formal mathematical proof is still remains an open problem.

7 Illustrative Examples

In these illustrative examples, we consider conditional probability matrices that are incompatible in
nature. These examples, although not taken from a real life scenario, are representative of the fact that
given an additional set of precise information, whether the two conditional distributions are compat-
ible or not, and in case they are not, can we find something close to what we call as ε-compatibility.
Prominent real life scenarios in which this might be useful are Bayesian networks, model building in
classical statistical settings, and elicitation and construction of multiparameter prior distributions in
Bayesian scenarios. The dimensions of the matrices A and B are taken to be either 3 or 4 in Examples
1 to 5. The matrix M for each example was easily constructed using Mathematica software. The
results of the iterative algorithm for the examples are shown in Tables 1 to 3.

• Example 1. In this example, we illustrate the above defined method in a simple case. Consider
the set (X,Y ) of two variables taking values 1, 2, 3, 4. Let us consider the associated conditional
probability matrices, where I = 4 and J = 4 and

A =


0.27 0.4 0 0.10
0.18 0.20 0.50 0.40
0.55 0.20 0.30 0.25

0 0.20 0.20 0.25

 ,

and

B =


0.15 0.28 0.35 0.22
0.45 0 0.25 0.30
0.50 0.17 0.20 0.13

0 0.55 0.20 0.30

 .

Here, A and B are incompatible since they do not share even a common incidence matrix.

Suppose that we have the following information (from our informed expert) :

– E
(
X2
)

= 7.49;
– P (Y = 3) = 0.38;
– P

(
X2 = 9

∣∣Y = 2
)

= 0.37;
– P

(
Y 2 = 1

∣∣X = 2
)

= 0.53.
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Here, we have p = (p11, p12, . . . , p44). In this case all the above information can be summarized
by our M matrix given as follows.

M =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 4 4 4 4 9 9 9 9 16 16 16 16
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0.37 0 0 0 0.37 0 0 0 −0.63 0 0 0 0.37 0 0
0 0 0 0 −0.47 0.53 0.53 0.53 0 0 0 0 0 0 0 0

 .

Subsequently, θ = (1, 7.49, 0.38, 0, 0). The iterative algorithm results are given in Table 1. In all
the examples we considered, the constraints were approximated to a relative absolute error of
10−6. The algorithm was found to converge for a wide range of values of λ.

• Example 2. In this example, we consider the set {X,Y } of two variables taking values 1, 2, 3.
Let us consider two conditional probability matrices, where I = 3 and J = 3 and

A =

 0.35 0.43 0
0 0.57 0.42

0.65 0 0.58

 ,

and

B =

 1
4

3
4 0

0 1
2

1
2

3
4 0 1

4

 .

Here also, one can easily examine that the matrices A and B are incompatible. Suppose that we
have the following information:

– E(X|Y = 2) = 1.5372;
– P

(
X2 = 1

∣∣Y = 1
)

= 0.4235;
– E

(
X2
∣∣Y 2 = 4

)
= 3.2953;

– P (X < 3|Y > 2) = 0.4367.

Here, we have p = (p11, p12, . . . , p33). Subsequently, in this case, our M matrix is

M =


1 1 1 1 1 1 1 1 1
0 −0.5372 0 0 0.4728 0 0 1.4728 0

0.5865 0 0 −0.4235 0 0 −0.4235 0 0
0 −1.2953 0 0 1.6147 0 0 7.6147 0
0 0 0.5733 0 0 0.5733 0 0 −0.4367

 .

We have θ = (1, 0, 0, 0, 0). The iterative algorithm results are given in Table 1.

• Example 3. Let us consider two conditional probability matrices, where I = 3 and J = 3 and

A =

 2
7

3
7 0

0 4
7

6
7

5
7 0 1

7

 ,

and

B =

 2
5

3
5 0

0 1
3

2
3

3
5 0 2

5

 .

Suppose that we have the following information:
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– P
(
X2 = 1

∣∣Y = 3
)

= 0;
– P

(
X2 = 9

∣∣Y ≥ 1
)

= 0.3956;
– E

(
X
∣∣Y 2 = 4

)
= 1.3726;

– P (Y > 2|X < 3) = 0.6849.

Here, we have p = (p11, p12, . . . , p33). Also in this case our M matrix is

M =


1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0

0.3956 0 0 −0.3956 0 0 0.6044 1 1
0 −0.3726 0 0 0.6374 0 0 0 2.6374

−0.6849 −0.6849 −0.6849 −0.6849 −0.6849 −0.6849 1 1 0

 .

Here, θ = (1, 0, 0, 0, 0). The iterative algorithm results are given in Table 3.

Criterion Optimal value Matrix P No. of iterations

D1 0.002353209


0.0610 0.0557 0.0484 0.0219
0.0837 0.0103 0.0485 0.0489
0.2069 0.0377 0.1111 0.0461
0.0000 0.0815 0.1345 0.0078

 8

D2 0.003245132


0.0583 0.0571 0.0492 0.0227
0.0837 0.0132 0.0465 0.0489
0.2062 0.0352 0.1132 0.0460
0.0000 0.0821 0.1351 0.0084

 11

D3 0.002129779


0.0681 0.0741 0.1590 0.0000
0.0841 0.0000 0.0419 0.0949
0.0000 0.0624 0.1004 0.1448
0.0389 0.0763 0.0547 0.0000

 10

D4 0.005605187


0.0686 0.0711 0.1538 0.0000
0.0864 0.0000 0.0419 0.0919
0.0000 0.0635 0.1026 0.1438
0.0415 0.0781 0.0561 0.0000

 12

D5 0.002219034


0.0682 0.0704 0.1523 0.0000
0.0868 0.0000 0.0420 0.0901
0.0000 0.0640 0.1049 0.1418
0.0426 0.0798 0.0571 0.0000

 10

D6 0.001537571


0.0686 0.0705 0.1528 0.0000
0.0867 0.0000 0.0420 0.0915
0.0000 0.0637 0.1037 0.1432
0.0421 0.0787 0.0565 0.0000

 9

Table 1: Minimal (ε) incompatibility results for Example 1.

The small values of divergence in Tables 1 to 3 are quite encouraging. There is no evidence that D1

decreases/increases with the dimension or the values in A and B. The nature of the results were
similar for a wide range of other A, B and for A, B of higher dimensions. A similar approach in the
case of continuous probability models still remains an open problem and will be taken up in a future
article.
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Criterion Optimal value Matrix P No. of iterations

D1 0.000291763

 0.0924 0.1638 0.0000
0.0000 0.1468 0.2605
0.1030 0.0000 0.2335

 6

D2 0.001796547

 0.1113 0.1469 0.0000
0.0000 0.1734 0.1302
0.2013 0.0000 0.2365

 9

D3 0.001796547

 0.1142 0.1478 0.0000
0.0000 0.1737 0.1320
0.2009 0.0000 0.2316

 10

D4 0.001652207

 0.1107 0.1472 0.0000
0.0000 0.1726 0.1298
0.2013 0.0000 0.2384

 11

D5 0.001079299

 0.1104 0.1471 0.0000
0.0000 0.1723 0.1293
0.2013 0.0000 0.2396

 9

D6 0.000609597

 0.1103 0.1472 0.0000
0.0000 0.1721 0.1283
0.2013 0.0000 0.2398

 8

Table 2: Minimal incompatibility results for Example 2.

Criterion Optimal value Matrix P No. of iterations

D1 0.001992807

 0.1052 0.1691 0.0000
0.0000 0.0587 0.07112
0.3062 0.0000 0.2895

 7

D2 0.001453787

 0.0921 0.1654 0.0000
0.0000 0.0632 0.0817
0.2931 0.0000 0.3045

 8

D3 0.002309232

 0.0961 0.2339 0.0000
0.0000 0.1799 0.0691
0.1194 0.0000 0.3014

 8

D4 0.008158526

 0.0904 0.2317 0.0000
0.0000 0.1721 0.0653
0.1224 0.0000 0.3182

 8

D5 0.004180903

 0.0860 0.2380 0.0000
0.0000 0.1885 0.1007
0.1109 0.0000 0.2759

 8

D6 0.00251268

 0.0936 0.2246 0.0000
0.0000 0.1808 0.0755
0.1317 0.0000 0.2935

 8

Table 3: Minimal incompatibility results for Example 3.

7.1 Some observations on the concept of ε-compatibility

The advantage of the definition of ε- compatibility utilized in this article is that the degree of incom-
patibility could be determined by standard linear programming techniques which has been advo-
cated by Arnold et al. (2001). However, this simplicity comes at a cost. If the information is found
to be, say, .0058 compatible it is difficult to interpret the meaning of the quantity .0058. It is obvious
that 0-compatible means completely compatible and 0.01 compatible is better than 0.023 compatible
but no interpretation of 0.01 or 0.02 seems available in the literature.
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8 Concluding remarks

The problem of finding most nearly compatible distribution(s) starting from two given conditionals
(that are incompatible) is not new in the literature. However, there is a scarcity of scholarly work
on this topic when in addition to complete specification of two given conditional probability matri-
ces, our informed expert has some additional information in the form of say, conditional percentiles
and/or conditional moments etc., among others. Arnold et al. (2001) has provided a brief overview
on the issue of finding minimally incompatible distribution in the presence of additional information.
However, the role of various existing as well as comparatively newly defined pseudo-divergence
measures in search for a minimally incompatible under the presence of additional information has
not been adequately addressed. In this paper, we explore the relative performance (equivalently the
applicability) of some of the well-known measures of divergence in finding a most nearly compati-
ble distribution in the presence of additional information. The survey made in this paper is far from
complete. Compatibility in higher dimensions, such as, given three conditional matrices, sayX given
Y and Z; Y given X and Z; and Z given X and Y in the presence of additional information (in terms
of marginal/conditional moments, percentiles etc.) will be the subject matter of a separate article.
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