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“Do not fear to be eccentric in opinion, for
every opinion now accepted was once
eccentric.”

— Bertrand Russell

Abstract

This work deals with the problem of using statistical sampling on spaces where no algebraic
operations are defined in advance. Sometimes, the target variable is not numeric and finding
a good representative value of this variable from a sample is not easy. Clearly, this complexity
depends on the nature of the problem and the variables involved. We start discussing a general
framework to cope with this kind of problems. For this purpose, we develop some techniques to
use statistical sampling on metric spaces. Subsequently, we study the specific case of variables
with partially ordered values. These variables represent the set of preferences of a collection of
individuals regarding some topic. We benefit from order theory to build well-behaved metrics
and provide a fully operational theory to work with partially ordered sets. Finally, we apply
these results to some relevant areas of official statistics. Among these applications, we highlight
a way of estimating the voting intention in respect of each political party in some election
campaigns. Further applications may include improving surveys about habits and opinion,
about user satisfaction or even estimating the control structure of enterprise groups.
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1 Introduction

Any statistical survey is designed to obtain aggregated data from a target population. The variables
measuring these data can be classified as qualitative (aka, categorical) or quantitative (aka, numeric).
When we work with quantitative variables the task is much easier, since we can measure distances
and perform basic arithmetic operations in order to build estimators in the classic way. We also have
powerful tools to perform statistical inference with these data.

The qualitative case is more challenging because one should find a convenient way to perform
basic algebra and compute distances on the categories associated. Imagine the next situation. A
company that manufactures and sells cars, wants to build a new model of car. In order to design
this new model, the company asks one hundred people about their favourite car. The interviewed
people can choose any car model among history of the car industry. Once the survey is done and
the preferences of people are collected, the company starts processing this information in order to
find the car model which is most preferred by people. The objective is designing the new car model
similar to the preferences of people. Since the sample is just one hundred and there are much more
car models, it is highly likely that each car model will appear just once in the sample. Therefore,
the statistical mode give us no information about the real preferences. Nor can we compute a mean
value, since there is not a natural way of doing arithmetics with cars. Obviously, other approach
is needed. Our first goal is to provide a general framework to use sampling theory with qualitative
variables. For this purpose, we will endow the target population with a metric space structure.

Subsequently, we are going to work with a specific type of quantitative variable, which are partially
ordered sets, or posets for short. Posets are normally understood as a way of giving particular
preferences over a set of objects where one person can prefer object A to B or be indifferent. These
mathematical structures model a lot of important situations in economy and social sciences, such as
consumer preferences, voting intention in respect of different political parties, choossing top priority
goals for a company, or any kind of comparison we can imagine. In mathematics, posets are the
core structure studied in order theory. Order theory constitutes a powerful tool in many different
fields, such as Decision Making, Game Theory, Evidence Theory, Utility theory and many others
(see e.g. [17, 14, 16] and the references therein). For this reason, the study of the properties of these
structures has attracted the attention of many researchers. Posets play also a fundamental role in
the geometrical structure of fuzzy measures [4, 12, 13].

In this work, we are going to develop a wide framework to use statistical sampling with posets.
We will start defining how to deal with the sampling problem. We will see from here that one of the
key facts consists in defining a well-behaved distance. We will study several kinds of distances and
analyze their properties. This is an interesting problem for several reasons. First, and most evident,
it is an appealing problem from a mathematical point of view. Next, being able to use statistics on
posets allows for estimating several interesting population characteristics in official statistics.

Next, we will apply these results to some relevant areas of official statistics. The examples
elaborated in this work illustrate several possible applications of order theory to official statistics,
however the presented theory can be applied in many more cases. Considering issues of confidentiality,
we will not use real data. Instead, we will use computer simulations inspired on the publicly available
data. Firstly, we focus on estimating the voting intention of society by asking people about political
preferences. The Spanish Sociological Research Center (CIS) carries out several election surveys. The
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objective is always to determine the general public opinion about the different political parties. In
many cases, this kind of surveys include questions about the order of preference among the different
political parties. These preferences are modelled by posets. We will provide techniques to estimate
the poset which best represents the opinion of the people. Then, we will explore some uses of this
theory into social surveys. Most of social surveys, as for example the fertility survey conducted by the
National Statistics Institute (INE), include a lot of multiple choice questions on their questionnaires.
Sometimes, people are asked to order some choices according to their preferences. Once again, posets
play an important role here. Later, we will focus on a quality question. We will discuss a way of
estimating the preferences of official statistics users among European Statistical System dimensions
of quality. Here the set of preferences is a poset and we ask about which poset explains the best
the preferences of a given sample. Note that each user of official statistics has certain preferences
in accordance with their needs. The objective is again to compute a poset that represent as best as
possible the general opinion of the population. Moreover, we will provide a way of determining a
global satisfaction index by using order theory.

Other interesting application is linked to quality of life indicators. In this case, we will use
the theory presented here to build global indicators taking into account multidimensional aspects of
quality of life dimensions. Finally, we will study some applications of these ideas to business registers
and enterprise statistics. Specificaly, we will discuss a way of comparing the control structure of
two groups. Sometimes, we get different information from different sources concerning the control
structure of an enterprise group. The goal is computing a poset fitting in an optimal way the
enterprise group structure. Moreover, we will develop inference methods to decide if two groups
structures are sufficiently dissimilar not to be the same group.

The rest of the work goes as follows: we start reviewing the basic theory of partially ordered
sets. In the next section, we deal with the problem of defining a theoretical framework to work
with samples in a metric space. We also give inference techniques inside this framework. Next,
we move to study different distances on posets that allow us to apply these results about metric
spaces to partially ordered sets. Then we explain several important applications of this theory to
official statistics. Finally, we conclude with conclusions and open problems. For the sake of being
self-contained, we also include two appendices about polyhedra and polytopes (appendix A) and
linear and integer programming (appendix B).

Throughout this work, we have used mathematical and statistical software in order to solve some
problems or do some simulations. The software used are R Commander, SAS and GAMS.
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2 Basic concepts and tools on posets

In this section we review the basics on order theory. For a general introduction on the theory of
posets see [6, 18]. Let us consider a finite set P endowed with a binary relation � .

Definition 1. Let P be a set and � be a binary relation over P . We say that P is a partially
order set (or poset for short) if:

i) Reflexivity: x � x, ∀x ∈ P,

ii) Antisymmetry: If x � y and y � x, then x = y,

iii) Transitivity: If x � y and y � z, then x � z.

With some abuse of notation, we will usually omit � and write P instead of (P,�) when referring
to posets. Elements of P are denoted x, y and so on, and also a1, a2, .... If |P | = m, we will also use
the notation P = {1, ...,m}. Subsets of P are usually denoted by capital letters A,B, .... We say that
y covers x, denoted xl y, if x � y and there is no z ∈ P \ {x, y} satisfying x � z � y. A poset can
be represented through Hasse diagrams. Suppose that (P,�) is a poset. We draw a Hasse diagram
for this poset by representing each element of P by a distinct point so that whenever x � y, the
point representing y is situated higher than the point representing x. The converse of this statement
is not true in general. Moreover, if y covers x, then we connect the points representing x and y by
a straight line segment. Figure 1 shows a Hasse diagram for the poset (P,�) where P = {1, 2, 3, 4}
and 1 � 4, 1 � 3, 2 � 4 and 2 � 3.

4 3

21

Figure 1: Poset P and its Hasse diagram.

An element x such that x 6≺ y, ∀y ∈ P is called a maximal element. Similarly, if x is such
that y 6≺ x,∀y ∈ P, x is called a minimal element. For a poset P , we can define the dual poset
P ∂ = (P,�∂) such that x �∂ y ⇔ y � x.

A chain is a poset such that � is a total order, i.e. x � y or y � x for all x, y in the chain.
We will denote the chain of m elements by m. The height of a poset P , denoted by h(P ), is the
maximum size of a chain in P. Similarly, an antichain is a poset where � is given by x � y ⇔ x = y.
We will denote the antichain of m elements by m. The width of a poset P , denoted by w(P ), is the
maximum size of an antichain in P.

Given an element x, we denote by ↓x the subposet of P whose elements are {y : y � x}; similarly,
we denote by ↑x the subposet of P whose elements are {y : x � y}. These notions can be extended
for a general subset A, thus obtaining ↓A and ↑A. Finally, we will denote by lA the set of elements
related to any element of A. An ideal or downset I of P is a subset of P such that if x ∈ I then
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↓ x ⊆ I. Symmetrically, a subset F of P is a filter or upset if for any x ∈ F and any y ∈ P such
that x � y, it follows that y ∈ F.

Two posets (P,�P ) and (Q,�Q) are isomorphic if there is a bijection f : P → Q such that
x �P y ⇔ f(x) �Q f(y). If two posets are isomorphic, then their corresponding Hasse diagrams
are the same up to differences in the names of the elements. Two elements x, y ∈ P are said to be
interchangeable if there is an automorphism f : P → P such that f(x) = y and f(y) = x.

Given two posets, (P,�P ), (Q,�Q), their direct sum, denoted P ⊕Q, is a poset over the refer-
ential P ∪Q (disjoint union) and whose partially order �P⊕Q is defined as follows: if x, y ∈ P then
x �P⊕Q y if and only if x �P y, if x, y ∈ Q then x �P⊕Q y if and only if x �Q y, and if x ∈ P, y ∈ Q
then x �P⊕Q y. A poset is irreducible by direct sum if it cannot be written as a direct sum of
two posets. Similarly, the disjoint union of two posets (P,�P ), (Q,�Q), denoted P ]Q is a poset
(P ∪ Q,�P]Q) where x �P]Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and x �Q y. A poset
which cannot be written as disjoint union of two posets is called connected. Obviously, the Hasse
diagram of a connected poset is also a connected graph, see Figure 2.

Figure 2: Direct sum and disjoint union of posets X and Y.

Other important operation is the product order. Given two posets, (P,�P ), (Q,�Q), their
product, denoted by P ×Q, is a poset over the cartesian product P ×Q and whose partially ordered
�P×Q is defined as follows: if (x1, y1) �P×Q (x2, y2) if and only if x1 �P x2 and y1 �Q y2, see Figure
3.

A linear extension of (P,�) is a sorting of the elements of P that is compatible with �, i.e.
x � y implies that x is before y in the sorting. Linear extensions will be denoted ε1, ε2 and so on
and the i-th element of ε is denoted ε(i). We will denote by L(P ) the set of all linear extensions of
poset (P,�) and by e(P ) = |L(P )|.
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Figure 3: Product order of posets X and Y.

When working with finite posets, it is sometimes convenient to denote elements as natural num-
bers. A labeling is a bijective mapping L : {1, 2, . . . , |P |} → P (see [18]). There are m! ways to
define a labeling. A labeling is natural if x � y implies L−1(x) ≤ L−1(y) with the natural numbers
order. It is well-known that every finite poset admits a natural labeling. A poset endowed with a
labeling is called a labeled poset. Observe that a labeled poset is simply a poset with different
consecutive natural numbers assigned to its elements.

Example 1. Consider the poset N , given by four elements 1, 2, 3, 4 and whose corresponding Hasse
diagram is given in Figure 4. The linear extensions of this poset N are

(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4)

Note that we have used a natural labeling for N.

4 3

21

Figure 4: N poset and its Hasse diagram.

It is important to distinguish between posets and labeled posets. Let us show an example to
clarify these issues. In addition, the next example exhibits how labeled posets model preferences.

Example 2. Labeled posets are the most natural way of modelling preferences. Let A and B be
two consumers and consider four consumer goods denoted by numbers 1, 2, 3 and 4. Suppose that the
consumer A and consumer B have preferences as the ones shown in Figure 5.

Note that these two posets are isomorphic but they are not the same as labeled posets. In other
words, they have the same shape but not the same numbers. So they are different as labeled posets.
From the last Figure we can see how consumer A prefers 2 to 1 and is indifferent between 3 and 4.
On the other hand, consumer B prefers 4 to 3 and is indefferent between 1 and 2. Despite the two
consumers have isomorphic preference posets, their preferences are very different to each other.
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Figure 5: Labeled posets showing the preferences of consumers A and B.

In this paper, we will always work with labeled posets, that is, not only the shape but also the
position of the numbers is important. For convenience, we will call posets to labeled posets from
now on. The number of posets with m labeled elements, p(m), grows exponentially. The following
table reveals the first values.

m 1 2 3 4 5 6 7 8 9
p(m) 1 3 19 219 4231 130023 6129859 431723379 44511042511

Obtaining closed formulas counting the number of labeled posets with m elements is an open
problem in mathematics. To learn more about this problem and enumerative combinatorics see [23].

In graph theory, a labeled poset is called a labeled acyclic transitive digraph. Indeed, the Hasse
diagram of a poset gives its representation as a directed graph, with all arrows up. For this reason,
we can define the adjacency matrix in the same way as it is done in graph theory.

Definition 2. Let P be a labeled poset with m elements. The adjacency matrix of P , denoted by
MP , is defined to be the square m×m matrix such that

MP (i, j) =

{
1, if i ≺ j

0, otherwise.

Example 3. Consider the preference matrices of consumers A and B in Example 2. By abuse of
notation, we use the same letters to name the two associated posets. Their adjacency matrices are

MA =


0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0

 MB =


0 0 0 0
0 0 0 0
1 1 0 1
1 1 0 0
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3 Sampling theory on metric spaces

As stated above, we are going to work with posets. Posets as many other qualitative variables have
not a natural way of performing arithmetic computations with them. The impossibility of using
this algebraic properties disables the classical sampling theory. Moreover, endowing a set with an
algebraic struture with good mathematical and practical attributes is usually complicated. It is much
simpler to define a metric on the set of elements of our population. This is the path we are going
to follow in this paper. This section is devoted to provide a powerful framework to use classical
sampling theory on a set together with a distance map. For an overview of sampling theory see [22].

Definition 3. A metric space is an ordered pair (X, d) where X is a set and d : X ×X → R+

is a metric (or distance) on X such that for any x, y, z ∈X

1. Identity of indiscernibles: d(x, y) = 0⇔ x = y,

2. Symmetry: d(x, y) = d(y, x),

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, x).

When only 1. and 2. are verified the function d is called semimetric and the pair (X, d) is
called a semimetric space. Most of the ideas we will see below hold for semimetric spaces. The
discrete metric, where dD(x, y) = 0 if x = y and dD(x, y) = 1 otherwise, is a simple but important
example, since for any set X the pair (X, dD) is always a metric space.

Unless otherwise specified, in this work the set X will be a finite set. Let us call XP =
{X1, . . . , XN} to our target population of size N, where Xi ∈ X. Note that XP can have re-
peated values. Any ordered subset of XP , S = {Xi1 , Xi2 , . . . Xin}, with possibly repeated values, will
be called a sample of size n.

As seen in the introduction, the statistical mode does not always have good properties. Particu-
larly, the statistical mode is not informative when all the values in the sample are different to each
other. In these cases, other representative value of the target population is needed. Notwithstanding
the foregoing, it is always good having alternative measures of position for the target population.
Our first goal is to define the population mean X of our target population XP . The first attempt
will be defining X = 1

N

∑N
i=1 Xi as usual. However, we cannot compute the sum of two elements of

X. Then to define it we are going to use an elemental but important property of the standard mean.

Proposition 1. Let X1, . . . , Xr be real numbers. Then the function f : R→ R, y →
∑r

i=1(Xi − y)2,

reachs a global minimum in the mean value 1
N

∑N
i=1Xi.

So, a way of defining the mean of a set of real values X1, . . . , Xr is by stating that it is the value
minimizing the sum of the squared distances. We use this philosophy to define the population mean
X in a finite metric space.

Definition 4. Let (X, d) be a finite metric space and XP = {X1, . . . , XN} be the target population
then

X := arg min
y∈X

N∑
i=1

d2(Xi, y).
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Note that the minimum of the last definition may not be unique. Therefore, the population mean
X in a metric space will be a subset of X. Defining the variance is easier. Since for numeric data we
have V (X) := 1

N

∑N
i=1(Xi −X)2 we replace the squared euclidean distance by our metric d.

Definition 5. Let (X, d) be a finite metric space and XP = {X1, . . . , XN} be the target population
then

V (XP ) :=
1

N

N∑
i=1

d2(Xi, X).

We are considering here that the distance between two sets is the minimum of the possible distances
between the elements of the two sets, i.e. d(A,B) = mina∈A,b∈B d(a, b), ∀A,B ⊆X.

From now on, we will use that the distance between two sets is the minimum of the possible
distances between the elements of the two sets. Observe that V (XP ) ∈ R+. Once we have defined
the most important population values, we must introduce the probability spaces. We use the standard
definitions.

Definition 6. Let Ω be a set. Then F ⊆ 2Ω is called σ-algebra if

1. Ω ∈ F ,

2. If A ∈ F ⇒ Ac ∈ F ,

3. If we have a countable collection {Ai}∞i=1 such that Ai ∈ F ,∀i ∈ N then ∪∞i=1Ai ∈ F .

The elements of F are called events. The pair (Ω,F) is called a measurable space.

Definition 7. Let (Ω,F) be a measurable space then P : F → [0, 1] is a probability measure if

1. P (Ω) = 1,

2. If we have a countable collection {Ai}∞i=1 such that Ai ∈ F ,∀i ∈ N and Ai ∩ Aj = ∅ for i 6= j,
then also P (∪∞i=1Ai) =

∑∞
i=1P (Ai).

This set of conditions are usually known as Kolmogorov axioms.

Definition 8. A probability space is a triple (Ω,F ,P ) where Ω is the set of possible outcomes,
F is a σ-algebra and P is a probability measure function.

Let Ω = X,F = 2X and P any probability mass function. Then (X, 2X ,P ) is a probability
space over the metric space X. Note that the last construction is completely standard. In a similar
way we can use random variables associated to X.

Definition 9. Let (Ω,F) and (E,G) be two measurable spaces. A random variable is a function
X : Ω→ E such that X−1(G) ∈ F , ∀G ∈ G.
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Making Ω = X and E = R we get real random variables on X. However, we can also consider
E = X to get random variables with values on X.

In statistical sampling theory, we work on the probability space (S, 2S ,P ) where S is the set
of possible samples drawn from the population XP and P is a probability measure on S. Usually,
(S, 2S ,P ) is called a sampling design. Now, we are in conditions to define an estimator.

Definition 10. Let (X, d) be a metric space and (S, 2S ,P ) be a sampling design, an estimator in

the metric space X is just a function θ̂ : S → 2X , such that θ̂(S) 6= ∅, ∀S ∈ S.

The sampling distribution of an estimator θ̂ : S → 2X is just

P (θ̂ = Θ) :=
∑

S∈S, θ̂(S)=Θ

P (S),

for all Θ ∈ 2X . Similarly,

P (t ∈ θ̂) :=
∑

S∈S, t∈θ̂(S)

P (S),

for all t ∈ X. When a decision rule R : 2X → X is available we can define point estimators as
R(θ̂) : S →X.

The next sensible step would be defining the expected value and the variance of an estimator. As
first attempt we could try E[θ̂] =

∑
S∈S P (S)θ̂(S). Nevertheless, we cannot sum elements in X. To

deal with this drawback, we focus on the next property of real numbers.

Proposition 2. Let X1, . . . , Xr be real numbers and P a probability on {1, 2, . . . , r}. Then the
function f : R → R, y →

∑r
i=1P (i)(Xi − y)2, reachs a global minimum in the weighted mean value∑N

i=1P (i)Xi.

Following the same philosophy as above, we can define the expected value as the element mini-
mizing the last weighted sum of distances.

Definition 11. Let (X, d) be a metric space, (S, 2S ,P ) be a sampling design, and θ̂ : S → 2X be
an estimator. We define the expected value as

E[θ̂] := arg min
y∈X

∑
S∈S

P (S)d2(θ̂(S), y).

By definition, E[θ̂] is a subset of X. So the expected value is not necessarily unique. Since the

classical definitions for variance, bias and mean squared error (MSE) of θ̂ are respectively

V (θ̂) :=
∑
S∈S

P (S)
(
θ̂(S)− E[θ̂]

)2

,

B(θ̂) := E[θ̂]−X,

MSE(θ̂) :=
∑
S∈S

P (S)
(
θ̂(S)−X

)2

.

We define the following adaptations to metric spaces.
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Definition 12. Let (X, d) be a metric space, (S, 2S ,P ) be a sampling design, and θ̂ : S → 2X be

an estimator. We define the variance, bias and mean squared error (MSE) of θ̂ respectively as

V (θ̂) :=
∑
S∈S

P (S)d2(θ̂(S),E[θ̂]),

B(θ̂) := d(X,E[θ̂]),

MSE(θ̂) :=
∑
S∈S

P (S)d2(θ̂(S), X).

These three measures are always positive real numbers. In a similar way, we can speak about

expressions like P
(
d(θ̂n, X) ≥ ε

)
. If θ̂n : Sn → 2X is an estimator, the sample size is n and θ ⊂X,

we say

P
(
d(θ̂n, θ) ≥ ε

)
=
∑
S∈A

P (S),

where A = {S ∈ Sn | d(θ̂n(S), θ) ≥ ε}. With these concepts in mind we can give a definition for
an estimator to be unbiased and consistent.

Definition 13. Let (X, d) be a metric space, (Sn, 2Sn ,P ) be a sampling design, with sample size n,

and θ̂n : Sn → 2X be an estimator. We will say that θ̂n : Sn → 2X is unbiased if E[θ̂n] ∩ X 6= ∅.
We say that θ̂n is consistent if ∀ε > 0

lim
n→∞

P
(
d(θ̂n, X) ≥ ε

)
= 0.

Let (Sn, 2Sn ,P ) be a sampling design with sample size n. Consider the random variable N i
n :

(Sn, 2Sn) −→ ({0, 1, . . . , n}, 2{0,1,...,n}) counting the number of times that the element i ∈X appears
in a sample Sn ∈ Sn. We can also count the number of times that the element i ∈X appears in the
target population XP , we call it N i := N i

N(XP ).

Definition 14. Let (Sn, 2Sn ,P ) be a sampling design with sample size n and N i
n be a map counting

the number of repetitions of element i ∈X in a sample Sn ∈ Sn. We say that the sampling design is
asymptotically consistent if ∀i ∈X we have

N i
n

n

L−→ N i

N
Li ⇔ lim

n→∞
P

(
N i
n

n
=
N i

N
Li

)
= 1,

where N i := N i
N(XP ) and Li ∈ N. In other words,

N i
n

n
converges in distribution to a constant value

N i

N
Li, for every i ∈X. Besides, if Li = 1 ∀i ∈X we say that the sampling design has asymtotically

equal probabilities of selection.
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A very common and important estimator in statistical sampling is the sample mean. To define it
in a setting of metric spaces we can apply the same philosophy as above and define the sample mean
estimator as the one minimizing the sum of squared distances. We will call it the Horvitz-Thompson
estimator.

Definition 15. Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be a sampling design with sample
size n. Let S = {X1, . . . , Xn} be a sample of size n. Then the Horvitz-Thompson estimator for
the population mean X is defined as

X̂HT (S) := arg min
y∈X

n∑
i=1

d2(Xi, y).

It is not difficult to show that this estimator is consistent for sampling designs having asymptot-
ically equal probabilities of selection. For this purpose, we will use the next technical Lemma.

Lemma 1. Let (X, d) be a finite metric space and fn : X → R such that for all x ∈ X,
limn→∞ fn(x) = f̃(x). Then the following finite time convergence holds

d

(
arg min

x∈X
fn(x), arg min

x∈X
f̃(x)

)
−−−→
n→∞

0.

Proof. For all x ∈X, limn→∞ fn(x) = f̃(x) then ∀εx > 0, ∃nx ∈ N such that |fm(x)− f̃(x)| < εx for
all m > nx. Denote ε = maxx∈X εx and

δ = min
|f̃(x)−f̃(y)|>0

x,y∈X

|f̃(x)− f̃(y)|.

Let ε = δ
2

and take m bigger than the maximum n = maxx∈X nx. Now observe that if f̃(x) < f̃(y)
then fm(x) < fm(y) for all m > n. Indeed,

fm(x) < f̃(x) +
δ

2
≤ f̃(y)− δ

2
< fm(y).

Therefore, if arg minx∈X f̃(x) = Θ ⊆X then ∀m > n, ∃ x∗m ∈ Θ such that x∗m ∈ arg minx∈X fm(x).
Thus

d

(
arg min

x∈X
fn(x), arg min

x∈X
f̃(x)

)
−−−→
n→∞

0,

in finite time.

Proposition 3. Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be a sampling design with

asymtotically equal probabilities of selection. Then X̂HT is a consistent estimator for the population
mean X.

13



Proof. Let An = {Sn ∈ Sn | d(X̂HT (Sn), X) ≥ ε}. Observe that

X̂HT (Sn) = arg min
y∈X

∑
i∈X

N i
n(Sn) · d2(i, y) = arg min

y∈X

∑
i∈X

N i
n(Sn)

n
· d2(i, y),

and

X = arg min
y∈X

∑
i∈X

N i · d2(i, y) = arg min
y∈X

∑
i∈X

N i

N
· d2(i, y).

By Lemma 1

fn(y) =
∑
i∈X

N i
n(Sn)

n
· d2(i, y) −−−→

n→∞

∑
i∈X

N i

N
· d2(i, y) = f̃(y)

therefore d(X̂HT (Sn), X) −−−→
n→∞

0 and An −−−→
n→∞

∅. Hence,

P
(
d(X̂HT (Sn), X) ≥ ε

)
=
∑
Sn∈An

P (Sn)→ 0.

The last proposition just works for asymtotically equal probabilities of selection. However, it could
be modified to get consistent estimators when the probabilities of selection are not asymtotically
equal. To this end, we can define the generalized Horvitz-Thompson estimator for the population
mean X.

Definition 16. Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be an asymptotically consistent

sampling design with
N i
n

n

L−→ N i

N
Li. Let S = {X1, . . . , Xn} be a sample of size n. The Generalized

Horvitz-Thompson estimator for the population mean X is defined as

X̂GHT (S) := arg min
y∈X

n∑
i=1

d2(Xi, y)

Li
.

The Generalized Horvitz-Thompson estimator is consistent for asymptotically consistent sampling
designs.

Proposition 4. Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be a consistent sampling design

with
N i
n

n

L−→ N i

N
Li. Then X̂GHT is a consistent estimator for the population mean X.

Proof. Let An = {Sn ∈ Sn | d(X̂GHT (Sn), X) ≥ ε}. Observe that

X̂GHT (Sn) = arg min
y∈X

∑
i∈X

N i
n(Sn) · d

2(i, y)

Li
= arg min

y∈X

∑
i∈X

N i
n(Sn)

n
· d

2(i, y)

Li
,
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and

X = arg min
y∈X

∑
i∈X

N i · d2(i, y) = arg min
y∈X

∑
i∈X

N i

N
· d2(i, y).

By Lemma 1

fn(y) =
∑
i∈X

N i
n(Sn)

n
· d

2(i, y)

Li
−−−→
n→∞

∑
i∈X

N i

N
· d2(i, y) = f̃(y)

therefore d(X̂GHT (Sn), X) −−−→
n→∞

0 and An −−−→
n→∞

∅. Hence,

P
(
d(X̂GHT (Sn), X) ≥ ε

)
=
∑
Sn∈An

P (Sn)→ 0.

In the classic schemes of sampling with replacement and without replacement and different prob-

abilities we can also modify X̂HT to get a consistent estimator.

Proposition 5. Let (X, d) be a finite metric space, XP = {X1, . . . , XN} be the target population,
and (Sn, 2Sn ,P ) be a sampling design. Then,

i) In a sampling with replacement scheme such that the probability of selecting element k is pk,
∀k ∈ {1, . . . .N}, the weighted Hansen-Horvitz estimator for the population mean

X̂WHH(S) := arg min
y∈X

n∑
i=1

d2(Xi, y)

pi
,

is consistent.

ii) In a sampling without replacement scheme such that the probability that element k is drawn at
least once is given by πk, ∀k ∈ {1, . . . .N}, the weighted Horvitz-Thompsom estimator
for the population mean

X̂WHT (S) := arg min
y∈X

n∑
i=1

d2(Xi, y)

πi
,

is consistent.

Proof. i) Note that when n tends to infinity the proportion of elements Xi in the sample tends
to pi. Let NXi

n be the number of times that the individual Xi is in the sample. By Lemma 1
since

fn(y) =
∑

Xi∈XP

NXi
n

n
· d

2(Xi, y)

pi
−−−→
n→∞

∑
Xi∈XP

pi ·
d2(Xi, y)

pi
= f̃(y),
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X = arg miny∈X
∑

Xi∈XP
d2(Xi, y) and X̂WHH(S) = arg miny∈X

∑
Xi∈XP

NXi
n

n
· d

2(Xi, y)

pi
the

consistency holds.

ii) Since the sampling scheme is without replacement, n tends to N and πi tends to 1. Therefore
by Lemma 1

fn(y) =
n∑
i=1

d2(Xi, y)

πi
−−−→
n→∞

N∑
i=1

d2(Xi, y)

1
= f̃(y),

then the consistency holds.

Note the similarity between the last result and the classic estimators:
∑n

i=1
Xi

npi
and

∑n
i=1

Xi

πi
. It

is not difficult to see that X̂HT is not unbiased in general. It does depend on the sampling design,
the probabilities and the metric. However, some partial results hold.

Proposition 6. Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be a sampling design, with
sample size n. If the probabilities are the same for each sample, i.e. P (S) = P (S ′), ∀S, S ′ ∈ Sn,
and the sample size is n = 1 then X̂HT is unbiased.

Proof. If the sample is {Xi} ⇒ X̂HT = arg miny∈X d
2(Xi, y) = Xi. Now,

E[X̂HT ] = arg min
y∈X

N∑
i=1

P (Xi)d
2(X̂HT (Xi), y) = arg min

y∈X

N∑
i=1

P (Xi)d
2(Xi, y) = arg min

y∈X

N∑
i=1

d2(Xi, y) = X.

In the last equality we have used that P (Xi) is constant.

Proposition 7. Let (X, d) be a finite metric space and (S, 2S ,P ) be a sampling design. We say

that (X, d) is starry at z ∈X if d(x, z) ≤ d(x, y) ∀x, y ∈X \{z}. If (X, d) is starry at z, then X̂HT

is unbiased and z ∈ E[X̂HT ].

Proof. By definition, E[X̂HT ] = arg miny∈X
∑

S∈S P (S)d2(X̂HT (S), y). Since (X, d) is starry at z,
we get for all y ∈X ∑

S∈S

P (S)d2(X̂HT (S), y) ≥
∑
S∈S

P (S)d2(X̂HT (S), z).

Then z ∈ E[X̂HT ]. Moreover, X = arg miny∈X
∑N

i=1 d
2(Xi, y) and z ∈ X. Finally, z ∈ X ∩

E[X̂HT ] 6= ∅ and X̂HT is unbiased.

In metric spaces we also have a law of large numbers.
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Theorem 1 (Law of Large Numbers). Let (X, d) be a finite metric space and (Sn, 2Sn ,P ) be a

sampling design with sample size n. Now, take S1, . . . , Sk independent trials of (Sn,P ). If θ̂ : Sn →
2X is an estimator, then for any ε > 0,

P
(
d(M̂k,E[θ̂]) ≥ ε

)
−−−→
k→∞

0,

where

M̂k = arg min
y∈X

k∑
i=1

d2(θ̂(Si), y).

Proof. Since k tends to infinity and there is a finite number of different samples, eventually a
time will come when every sample will appear in proportion to its probability P (S). Let NS

k be

the number of times that the sample S is drawn among the k samples. Observe that M̂k =

arg miny∈X
∑

S∈Sn
NS
k

k
d2(θ̂(S), y). Applying Lemma 1

fk(y) =
∑
S∈Sn

NS
k

k
d2(θ̂(S), y) −−−→

k→∞

∑
S∈Sn

P (S)d2(θ̂(S), y) = f̃(y).

Finally, d(M̂k,E[θ̂]) −−−→
k→∞

0 and the result follows.

Finally, we are going to provide some methodology to estimate the variance and the bias of
an estimator. We will use a bootstrapping resampling technique. From our original sample S we
resample B bootstrap samples of size n with replacement. We denote these bootstrap samples by
BSi, i ∈ {1, . . . , B}. The more bootstrap samples we take, the better the estimation becomes. For a

numeric estimator θ̂, the classic bootstrap use the following estimations:

B̂(θ̂) =
1

B

B∑
i=1

θ̂(BSi)− θ̂(S),

V̂ (θ̂) =
1

B

B∑
i=1

(θ̂(BSi)− θ̂B(S))2,

where θ̂B(S) =
1

B

∑B
i=1 θ̂(BSi). The classic Law of Large Numbers tell us that, if our simulation

times B is large enough, the bootstrap variance estimation is a good approximation for the variance.
The idea of the bias approximation is that θ̂B(S) ≈ E[θ̂] by the law of large numbers and θ̂(S) ≈ X.
For a good performance of bootstrap method, it is also necessary the convergence of the empirical
distribution to the true distribution function when sample size is large, see [8].

For metric spaces, let θ̂ : S → 2X be an estimator, the bootstrap estimations are as follows:

B̂(θ̂) = d(θ̂B(S), θ̂(S)),
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V̂ (θ̂) =
1

B

B∑
i=1

d2(θ̂(BSi), θ̂B(S)),

where θ̂B(S) = arg miny∈X
∑B

i=1 d
2(θ̂(BSi), y). Note that by the metric version of the law of large

numbers we get θ̂B(S) ≈ E[θ̂] and we can use in general the same ideas used for numerical variables.
Some examples illustrating the last concepts are outlined below.

Example 4. The next example is very interesting for a Bussines Register department. Let us con-
sider, for instance, an enterprise group formed by 50 companies. Each company has an economic
activity. We use the NACE activity code for determining the economic activity of each company.
NACE code is the four digit “statistical classification of economic activities in the European Commu-
nity” see [11]. The objective is to assign an activity code to the whole group based on the activities
of its companies. Furthermore, suppose that we are limited to use just information about the activity
code. In order to keep a low administrative burden on the entreprise group a statistics office ask just
the activity code of n = 5 companies from the total group N = 50. Their NACE codes are, respec-
tively, 4213 (“Construction of bridges and tunnels”), 4211 (“Construction of roads and motorways”),
7111 (“Architectural activities”), 7112 (“Engineering activities and related technical consultancy”)
and 6910 (“Legal activities”). Similar NACE codes have similar beginning numbers, then we can
define the following distance on NACE codes:

d((x1, x2, x3, x4), (y1, y2, y3, y4)) =



6, if x1 6= y1

5, if x1 = y1 ∧ x2 6= y2

4, if x1 = y1 ∧ x2 = y2 ∧ |x3 − y3| > 1

3, if x1 = y1 ∧ x2 = y2 ∧ x3 = y3 ± 1

2, if x1 = y1 ∧ x2 = y2 ∧ x3 = y3 ∧ |x4 − y4| > 1

1, if x1 = y1 ∧ x2 = y2 ∧ x3 = y3 ∧ x4 = y4 ± 1

0, if x1 = y1 ∧ x2 = y2 ∧ x3 = y3 ∧ x4 = y4.

Needless to say, there are better and more complex ways of defining distances between NACE
codes, however there are out of the scope of this work. With the help of a computer we get that:

X̂HT := arg min
y∈X

n∑
i=1

d2(Xi, y) = 7111 NACE.

So we can take the NACE 7111 as the economic activity of this enterprise group. By using

bootstrap estimation with B = 1000, we get B̂(X̂HT ) = 0 and V̂ (X̂HT ) = 19.41.

3 .1 Statistical inference on metric spaces

So far, we have achieved an excellent framework to work over metric spaces. We have been able to
give the most important definitions appearing in statistical sampling and probability. However, it
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would be interesting to go further and elaborate a way of using statistical inference for metric spaces.
In this subsection we will see how to do this. We need a previous result.

Theorem 2 (Chebyshev’s inequality on metric spaces). Let (X, d) be a finite metric space

and θ̂ : S → 2X an estimator. Consider also a positive number ε > 0, then

P
(
d(θ̂,E[θ̂]) ≥ ε

)
≤ V (θ̂)

ε2
.

Proof. Using the definitions given previously, we get

V (θ̂) =
∑
S∈S

P (S)d2(θ̂(S),E[θ̂]) =
∑
S∈A

P (S)d2(θ̂(S),E[θ̂]) +
∑
S/∈A

P (S)d2(θ̂(S),E[θ̂]) ≥

≥
∑
S∈A

P (S)d2(θ̂(S),E[θ̂]) + 0 ≥ ε2
∑
S∈A

P (S) = ε2P
(
d(θ̂,E[θ̂]) ≥ ε

)
,

where A = {S ∈ S | d2(θ̂(S),E[θ̂]) ≥ ε2}.

Corollary 1. Let (X, d) be a finite metric space and θ̂ : S → 2X an estimator. Consider also a
positive number ε > 0, then

P
(
d(θ̂,E[θ̂]) < ε

)
≥ 1− V (θ̂)

ε2
.

Corollary 2. Let (X, d) be a finite metric space and θ̂ : S → 2X an estimator. Consider also a
positive number ε > 0, then

P
(
d(θ̂, X) < ε

)
≥ 1− MSE(θ̂)

ε2
.

Proof. The proof is the same as the one for Chebyshev’s inequality, but replacing E[θ̂] with X.

Now we can give a definition for confidence intervals in metric spaces.

Definition 17. Let (X, d) be a finite metric space and Θ ⊂X. We say that the estimator θ̂ : S → 2X

gives a symmetric confidence interval for Θ of significance level α and radius r if

P
(
d(θ̂,Θ) < r

)
≥ 1− α.

Therefore, we can use the Chebyshev’s inequality to build symmetric confidence intervals for the

population mean X by making r = ε =

√
MSE(θ̂)

α
,
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P

d(θ̂, X) <

√
MSE(θ̂)

α

 ≥ 1− α.

Fixing α, the lower the radius the better the estimator. However, we have not a method to
estimate MSE(θ̂). Fortunately, we can get an upper bound for MSE(θ̂).

Proposition 8. Let (X, d) be a finite metric space and θ̂ : S → 2X be an estimator. Then

MSE(θ̂) ≤
(√

V (θ̂) +B(θ̂)

)2

.

Proof. By the triangle inequality,

MSE(θ̂) :=
∑
S∈S

P (S)d2(θ̂(S), X) ≤
∑
S∈S

P (S)
(
d(θ̂(S),E[θ̂]) + d(E[θ̂], X)

)2

=

= V (θ̂) +B2(θ̂) + 2B(θ̂)
∑
S∈S

P (S)d(θ̂(S),E[θ̂]).

Recall that a function ϕ : R→ R is concave if for any α ∈ [0, 1] and x, y ∈ R, it holds

ϕ ((1− α)x+ αy) ≥ (1− α)ϕ(x) + αϕ(y).

By the Jensen’s inequality, if ϕ is a concave function, xi real numbers in the domain of ϕ, and
αi ≥ 0 for all i ∈ {1, 2, . . . , L} are positive weights then

ϕ

(∑L
i=1 αixi∑L
i=1 αi

)
≥
∑L

i=1 αiϕ(xi)∑L
i=1 αi

.

Now applying the Jensen’s inequality for the concave function ϕ(x) =
√
x we get∑

S∈S

P (S)

√
d2(θ̂(S),E[θ̂]) ≤

√∑
S∈S

P (S)d2(θ̂(S),E[θ̂]) =

√
V (θ̂).

Therefore,

MSE(θ̂) ≤ V (θ̂) +B2(θ̂) + 2B(θ̂)

√
V (θ̂) =

(√
V (θ̂) +B(θ̂)

)2

.

Finally we can use the bootstrap method to get an operative symmetric confidence interval. Let
θ̂ : S → 2X be an estimator, then

P

d(θ̂, X) <

√
V̂ (θ̂) + B̂(θ̂)
√
α

 ≥ 1− α,
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is a symmetric confidence interval for the population mean X of significance level α.
Now let us see some examples.

Example 5. Imagine that some company is going to launch a new product onto the market. The
company wonders which color consumers like best. In this case the target population is the set of all
potential consumers. This way the company expects to maximise their sales. With this idea in mind,
the company conducts a survey asking about which color will be the best for its new product. They ask
100 people about a RGB color code. The sampling is done without replacement and same selection
probabilities. The color is expressed as an RGB triplet (r, g, b), each component of which can vary
from zero to a maximum value 255. If all the components are at zero the result is black; if all are
at maximum, the result is the brightest representable white. For instance, (255, 0, 0) is the red color.
Since a lot of possibilities are allowed, it is highly likely that each person will choose a different color.
Therefore, we cannot use the statistical mode to get a good representative value of the population. In
this case, following the ideas defined above, we need a distance. The euclidean distance is an easy
one, that is

d ((r1, g1, b1), (r2, g2, b2)) =
√

(r2 − r1)2 + (g2 − g1)2 + (b2 − b1)2.

Let us suppose that the sample is given by Xi = (ri, gi, bi) = (i, 2i, i/3) where i = 1, 2, . . . , 100.
The Horvitz-Thompson estimator is

X̂HT := arg min
y∈X

n∑
i=1

d2(Xi, y) = arg min
(r,g,b)

n∑
i=1

[
(r − ri)2 + (g − gi)2 + (b− bi)2

]
.

Since we have chosen the euclidean distance the last expression reachs a minimum for(∑n
i=1 ri
n

,

∑n
i=1 gi
n

,

∑n
i=1 bi
n

)
=

(
n+ 1

2
, n+ 1,

n+ 1

6

)
= (50.5, 101, 16.8).

However, the vector (50.5, 101, 16.8) is not a valid rgb color since the coordinates must be natural
numbers. Simply take the nearest integer number of the mean, the selected rule is to round half-
integers to the nearest even integer:(

b
∑n

i=1 ri
n
e, b
∑n

i=1 gi
n
e, b
∑n

i=1 bi
n
e
)
∈ X̂HT

In fact, when one mean is a half-integer then the two nearest integer numbers give elements in

X̂HT and these are all the possible solutions. In our case X̂HT = {(50, 101, 17), (51, 101, 17)}.
Let us take (50, 101, 17) as an estimation of the population mean X. Just out of curiosity, this

color is shown in Figure 6.

By using bootstrap estimation with B = 1000, we get B̂(X̂HT ) = 0 and V̂ (X̂HT ) = 44.85594. By
using the last proposition for α = 0.05, since d(x, y) ≥ 1, we obtain

P

d(X̂HT , X) <

√
V̂ (X̂HT ) + B̂(X̂HT )

√
α

 ≥ 1− α⇔ P
(
d(X̂HT , X) < 29.94

)
≥ 0.95.
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Figure 6: RGB(50,101,17) color.

Then the distance between the estimator RGB(50, 101, 17) and the population mean X is lower
than 29.94 with a probability of 95%.

In some cases the mean is very sensitive to outliers. The last example is a good example for that.
A good solution is performing the mean without outliers, this is called the truncated mean or
trimmed mean. In metric spaces, we also can define robust estimators like the trimmed mean. It
is enough to define what is an outlier. We say that some element z in a metric space (X, d) is an M -
outlier if {x ∈X | d(x, z) ≤M} = {z}. This way we can define the Trimmed Horvitz-Thompson
estimator on metric spaces,

X̂THT := arg min
y∈X′

n∑
i=1

d2(Xi, y),

where X ′ is the set of non M -outliers of X.

Example 6. In the Economically Active Population Survey one important variable is the attained
level of education. This is the typical example of quantitative variable with several categories. The
first step is selecting a metric. A possible choice would be the discrete metric dD. With this metric
the Horvitz-Thompson estimator is the mode. This is a reasonable option, however we can change
the metric to add information about the categories. Usually, the distance between categories is not
uniform and using non trivial distances enhance the quality of the model. For defining a non trivial
distance we assign a number to each of the categories. These loads have been discussed with experts
on the Economically Active Population Survey, see the next table.

Levels of education Loads Sample
Illiterates 0 4

Incomplete primary education 2 10
Primary education 6 11

First stage of secondary education 9 13
Second stage of secondary education, with general guidance 11 20
Second stage of secondary education, with career guidance 12 17

Higher education 16 25

The distance between two categories is given by the difference of its loads d(A,B) = |lA − lB|.
Note that the bigger the distance between two categories, the more complicated it is to move from the
first category to the second one. Let us take a sample without replacement of n = 100. The number
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of individuals on each category is given in the table. Our objective is to give a representative value
for the population. Start by computing the Horvitz-Thompson estimator:

X̂HT := arg min
y∈X

n∑
i=1

d2(Xi, y) = arg min
y∈X

n∑
i=1

(lXi
− ly)2.

Since we have chosen the euclidean distance the last expression reachs a minimum for

1

n

n∑
i=1

lXi
=

4 · 0 + 10 · 2 + 11 · 6 + 13 · 9 + 20 · 11 + 17 · 12 + 25 · 16

100
= 10.27.

However, the result is not the load of any category. For this reason we should search for the
nearest integer being a load, in this case 11. This way,

X̂HT = “Second stage of secondary education, with general guidance”.

Observe, that this value is very different from the mode “Higher education”. By using bootstrap

estimation with B = 1000, we get B̂(X̂HT ) = 0 and V̂ (X̂HT ) = 1.261. By using the last proposition
for α = 0.05, since d(x, y) ≥ 1, we obtain

P

d(X̂HT , X) <

√
V̂ (X̂HT ) + B̂(X̂HT )

√
α

 ≥ 1− α⇔ P
(
d(X̂HT , X) < 5.02

)
≥ 0.95.

Then the distance between the estimator X̂HT and the population mean X is lower than 5.02
with a probability of 95%. Therefore, we can state that the population mean X is not the category
“Illiterates” nor “Incomplete primary education” with a probability of 95%.

4 Distances between posets

In the section above, we could see how we can derive a way of doing statistics on a set where the only
mathematical structure is given by a metric. In this section, we analyse convenient ways of defining
distances between posets. For this purpose, we start working with the adjacency matrix associated
to a poset P, MP . Then we can define the matricial distance between posets as follows.

Definition 18. Let P,Q be two labeled posets with the same number of elements, |P | = |Q| = m.
Then we define the matricial distance between P and Q as:

dM(P,Q) =

√√√√ m∑
i=1

m∑
j=1

(MP (i, j)−MQ(i, j))2.
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We should check that this function is indeed a metric. The symmetry (property 2.) holds trivially.
For 1., note that

∑m
i=1

∑m
j=1(MP (i, j) −MQ(i, j))2 = 0 ⇔ MP (i, j) = MQ(i, j),∀i, j ⇔ P is equal

to Q. Finally, the triangle inequality is a direct consequence of the classic Minkowski inequality for
real numbers xi, yi, √√√√ N∑

i=1

(xi + yi)2 ≤

√√√√ N∑
i=1

x2
i +

√√√√ N∑
i=1

y2
i ,

adding on each pair (i, j). Therefore, the matricial distance between posets is, in fact, a distance.
Under this metric, we can consider the following metric space (Pm, dM) where Pm is the set of
labeled posets with m elements and dM is the matricial distance. Consider here a population of size
N, where each individual has an associated poset Pk ∈ Pm. In a sample of size n, remember that the
Horvitz-Thompson estimator for the population mean X is

X̂HT := arg min
Q∈Pm

n∑
k=1

d2
M(Pk, Q).

By section 3, this estimator is consistent when we consider a sampling scheme without replacement
and we have techniques to estimate bias and variance. However, if n is big enough this minimum
could be very difficult to compute because the cardinal of Pm grows amazingly fast. For this reason,

we need a practical way of computing X̂HT for this metric.

Lemma 2. Consider the metric space (Pm, dM) and the Horvitz-Thompson estimator X̂HT for a
sample of size n, then

X̂HT = arg min
Q∈Pm

d2
E(Q,M),

where M(i, j) =
1

n

∑n
k=1MPk

(i, j) and dE is the euclidean distance between matrices, i.e.

d2
E(Q,M) =

m∑
i=1

m∑
j=1

(
MQ(i, j)−M(i, j)

)2
.

Proof. By definition,

X̂HT = arg min
Q∈Pm

n∑
k=1

d2
M(Pk, Q) = arg min

Q∈Pm

n∑
k=1

m∑
i=1

m∑
j=1

(MPk
(i, j)−MQ(i, j))2 =

= arg min
Q∈Pm

m∑
i=1

m∑
j=1

n∑
k=1

(MPk
(i, j)−MQ(i, j))2.

Now, observe that

n∑
k=1

(MPk
(i, j)−MQ(i, j))2 =

n∑
k=1

((
MPk

(i, j)−M(i, j)
)

+
(
M(i, j)−MQ(i, j)

))2
=
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=
n∑
k=1

(
MPk

(i, j)−M(i, j)
)2

+
n∑
k=1

(
M(i, j)−MQ(i, j)

)2
.

In the last line we have used that
∑n

k=1

(
MPk

(i, j)−M(i, j)
) (
M(i, j)−MQ(i, j)

)
= 0.

Therefore,

X̂HT = arg min
Q∈Pm

m∑
i=1

m∑
j=1

(
n∑
k=1

(
MPk

(i, j)−M(i, j)
)2

+
n∑
k=1

(
M(i, j)−MQ(i, j)

)2

)
=

= arg min
Q∈Pm

(
m∑
i=1

m∑
j=1

n∑
k=1

(
MPk

(i, j)−M(i, j)
)2

+
m∑
i=1

m∑
j=1

n∑
k=1

(
M(i, j)−MQ(i, j)

)2

)
=

= arg min
Q∈Pm

m∑
i=1

m∑
j=1

n∑
k=1

(
MQ(i, j)−M(i, j)

)2
,

since the first summand remains constant for Q. Finally,

arg min
Q∈Pm

m∑
i=1

m∑
j=1

n∑
k=1

(
MQ(i, j)−M(i, j)

)2
= arg min

Q∈Pm

m∑
i=1

m∑
j=1

(
MQ(i, j)−M(i, j)

)2
.

Corollary 3. Consider the metric space (Pm, dM) and the Horvitz-Thompson estimator X̂HT for
a sample of size n. If the matrix bMe, whose coordinates are the coordinates of M rounded to the

nearest integer, is the adjacency matrix of some poset P, then X̂HT = P.

Observe that the last lemma has a geometric interpretation, see Figure 7. X̂HT is the minimum of
a paraboloid in m×m dimensions. If we worked with real numbers, the minimum would be achieved
in the mean value M. It is just the usual situation for the mean. Typically, M is not the adjacency
matrix of any poset. Then, we should look for the adjacency matrix which is closest to the general
minimum M. In other words, we are looking for posets in the level curves of a paraboloid, so the

closer to the mean the better. This is X̂HT are the posets minimizing its euclidean distance to M.
Before we state the next theorem, we should remember that the adjacency matrix just takes 0 and
1 values.

Theorem 3. Consider the metric space (Pm, dM) and the Horvitz-Thompson estimator X̂HT for a

sample of size n, then X̂HT is the solution to the next integer linear programming problem:

minimize
∑m

i=1

∑m
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
MQ(i, j) ∈ {0, 1}, i, j = 1, ...,m
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Figure 7: Geometric interpretation, X̂HT are the posets minimizing its euclidean distance to M.

Proof. By the last lemma, we have

X̂HT = arg min
Q∈Pm

m∑
i=1

m∑
j=1

(
MQ(i, j)−M(i, j)

)2
=

= arg min
Q∈Pm

m∑
i=1

m∑
j=1

[
M2

Q(i, j) +M
2
(i, j)− 2MQ(i, j)M(i, j)

]
.

Since the adjacency matrix is 0/1-valued we getM2
Q(i, j)+M

2
(i, j)−2MQ(i, j)M(i, j) = MQ(i, j)+

M
2
(i, j)− 2MQ(i, j)M(i, j). Moreover, the second summand is constant for Q then

X̂HT = arg min
Q∈Pm

m∑
i=1

m∑
j=1

[
MQ(i, j)− 2MQ(i, j)M(i, j)

]
=

= arg min
Q∈Pm

m∑
i=1

m∑
j=1

(
1− 2M(i, j)

)
MQ(i, j).

Now, we are going to state this problem in a mathematical optimization setting. Before that,
we should realize two things. For a matrix MQ to be the adjacency matrix of some poset Q, we
need that MQ verifies antisymmetry and transitivity conditions. Symmetry can be translated as
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MQ(i, j) +MQ(j, i) ≤ 1, ∀i, j. Transitivity translates as MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), ∀i, j, k.
Then X̂HT is the solution to the next integer linear programming problem.

minimize
∑m

i=1

∑m
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
MQ(i, j) ∈ {0, 1}, i, j = 1, ...,m

There are many algorithms to solve integer linear programming (ILP) problems, see appendix B.
Most of them are implemented in common programming languages as R, SAS or Matlab. However,
ILP problems are NP-complete, so they are in general difficult to solve. Nevertheless, we always will
be able to solve this problem for a fairly small m. The polytope determined by the inequalities,

MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
MQ(i, j) ≥ 0, i, j = 1, ...,m

is the polytope associated to this linear programming problem. Let us denote this polytope by
PLm. Since the objective function is linear the optimum is achieved in a vertex of this polytope. It
is not very surprising that every labeled poset is a vertex of this polytope. Although there are other
vertices apart from the ones defining labeled posets. These other vertices are not 0/1 valued, then
PLm is not an integer polytope.

Theorem 4. Let P ∈ Pm be a labeled poset with m elements. Then the adjacent matrix of P, MP is
a vertex of PLm.

Proof. We are going to prove that every labeled poset is an extreme point of PLm. Observe that
any labeled poset is represented as a 0/1-valued adjacency matrix MP . Suppose that MP is not a
vertex of PLm, then exist two different points X, Y ∈ PLm such that MP = αX + (1 − α)Y for
some α ∈ (0, 1). If MP (i, j) = 0 = αX(i, j) + (1 − α)Y (i, j) then X(i, j) = Y (i, j) = 0 because
0 ≤ X, Y ≤ 1. Symmetrically, if MP (i, j) = 1 = αX(i, j) + (1− α)Y (i, j) then X(i, j) = Y (i, j) = 1.
Therefore, X = Y = MP and we attain a contradiction. We conclude that MP is a vertex of
PLm.

In practice, we can avoid dealing with integer linear programming since all the labeled posets are
vertices of PLm. Instead we should work with the next linear programming problem:

minimize
∑m

i=1

∑m
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
MQ(i, j) ≥ 0. i, j = 1, ...,m
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Of course, this problem has a much lower complexity than the last integer linear problem. Indeed,
this problem has polynomial complexity and it could be solved with the famous simplex method.
If the optimum is achieved in a 0/1 vertex then we have already concluded. If that is not the
case, we should search for the second best vertex using simplex algorithm, and so on. This way, we
would look for the optimum in the vertices which are adjacent to the linear programming solution.
Usually, simplex algorithm does that for us. The simplex method is an algorithm easy to find in
most mathematical or statistical software.

Let us see now an example illustrating the last ideas.

Example 7. Imagine the next situation. The goverment wants to conduct a survey asking about
the major concerns for citizens. The target population are all the people of legal age of that country.
They can choose among five different issues of concern: “Unemployment” (U), “Education system”
(E), “Environment” (N), “Public health” (H) and “Pensions” (P). The sample is designed without
replacement and having size n = 100. Note that each person reports about their preference poset, for
instance see Figure 8 showing the preference posets of two persons. Note that the first person is more
concerned about pensions than about education while the second one is indifferent between these two
issues. The rest of the sample is simulated by computer.

UH

P

E N

U

HPE

N

Figure 8: Two preference posets.

It is a good and easy exercise to compute the matricial distance between the last two posets,
dM(P,Q) = 5. Now, we are going to compute the Horvitz-Thompson estimator:

X̂HT := arg min
Q∈Pm

n∑
k=1

d2
M(Pk, Q).

In order to get the value of X̂HT , we should solve the next ILP problem.

minimize
∑5

i=1

∑5
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ..., 5
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ..., 5
MQ(i, j) ∈ {0, 1}, i, j = 1, ..., 5

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure 9.
Therefore, in this example, the unemployment is the major concern for citizens, followed by

public health and pensions. The enviroment and the education are of much lower concern. With this

28



U

H P

E N

Figure 9: X̂HT obtained by solving the associated ILP.

estimation, the goverment wants to know how to spend the money according to the preferences of
people. As it is explained in appendix A, we can give a solution to this by using the center of gravity

of the order polytope associated to X̂HT . Let us call P to the poset X̂HT . The center of gravity cP
can be computed as follows:

cP =
1

m+ 1
H(P ),

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. Poset P has 4 linear

extensions: (E,N,H, P, U), (N,E,H, P, U), (E,N, P,H, U), (N,E, P,H, U). Now, using the order
(E,N,H, P, U), we sum the vectors having the positions of each element on each linear extension:

H(P ) =
1

4
[(1, 2, 3, 4, 5) + (2, 1, 3, 4, 5) + (1, 2, 4, 3, 5) + (2, 1, 4, 3, 5)] =

1

4
(6, 6, 14, 14, 20).

Finally, cP =
1

6
H(P ) = (3/12, 3/12, 7/12, 7/12, 10/12).

We just divide cP by its sum to get a vector which add up to 1, i.e. cP = (3/30, 3/30, 7/30, 7/30, 10/30).
This vector gives us the percentage that must be invested by the goverment on each issue.

Finally we are going to introduce other interesting distance between posets, see [1].

Definition 19. Let P,Q be two labeled posets with the same number of elements, |P | = |Q| = m.
Then we define the internal distance between P and Q as:

dI(P,Q) = m− η(P,Q),

where η(P,Q) is the cardinal of biggest poset which is isomorphic simultaneously to P and Q as
labeled posets.

Proposition 9. (Pm, dI) is a metric space.

Proof. We have to show that dI is a distance. Properties 1. and 2. hold trivially. Let us see the
triangle inequality. Let P1, P2 and P3 be three labeled posets. Let us call Qij to the biggest poset
which is isomorphic simultaneously to Pi and Pj. We want to prove that dI(P1, P2) ≤ dI(P1, P3) +
dI(P3, P2). We consider three different cases:
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• If |Q13 ∩ Q32| = 0 ⇒ η(P1, P3) + η(P3, P2) ≤ m ≤ m + η(P1, P2) ⇒ dI(P1, P2) ≤ dI(P1, P3) +
dI(P3, P2).

• If |Q13∩Q32| = 1⇒ η(P1, P3)+η(P3, P2) ≤ m+1 ≤ m+η(P1, P2)⇒ dI(P1, P2) ≤ dI(P1, P3)+
dI(P3, P2).

• If |Q13∩Q32| ≥ 2. Take a pair of elements (x, y) ∈ Q13∩Q32, then x ≤P1 y ⇔ x ≤P3 y ⇔ x ≤P2 y
then (x, y) ∈ Q12 ⇒ Q13∩Q32 ⊆ Q12 ⇒ Qc

12 ⊆ Qc
13∪Qc

32 ⇒ dI(P1, P2) ≤ dI(P1, P3)+dI(P3, P2).

This distance perfectly captures the idea of poset distance at the expense of a higher complexity.
Finding a way of making operative this internal distance between posets remains as an open problem.

4 .1 Distances between chains

Sometimes, it is difficult to collect data with a partially ordered structure. Particularly, when m is
big enough, asking people to choose between so many alternatives could not be the best option. In
this case, using chains is an easier alternative. Each individual reports about a total order being
their preferences on some topic. In a total order every two elements are related to each other. We
are going to work with the following metric space (Cm, dM) where Cm is the set of labeled chains
with m elements and dM is the matricial distance. Let C ∈ Cm be a chain and MC its associated
adjacency matrix, note that MC(i, j) +MC(j, i) = 1 ∀i 6= j. Then the ILP problem associated to the
Horvitz-Thompson estimator changes.

Theorem 5. Consider the metric space (Cm, dM) and the Horvitz-Thompson estimator X̂HT for a

sample of size n, then X̂HT is the solution to the next integer linear programming problem:

minimize
∑m

i=1

∑m
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) = 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
MQ(i, j) ∈ {0, 1}, i, j = 1, ...,m

Proof. The proof is the same as the one above done for (Pm, dM). This is because a chain is a specific
type of poset.

However, we can get another interesting metric space for chains by changing a little bit the
distance. To determine a chain we just need to know the position of each element in the chain. Let
us define another matrix associated to a chain, called the position matrix and denoted by TC . It is
defined as the square m×m matrix such that

TC(i, j) =

{
1, if i is in position j at C

0, otherwise.

Therefore, we can define a new distance between chains by
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dT (C,D) =

√√√√ m∑
i=1

m∑
j=1

(TC(i, j)− TD(i, j))2.

The following result is proved in the same way as in the last subsection.

Lemma 3. Consider the metric space (Cm, dT ) and the Horvitz-Thompson estimator X̂HT for a
sample of size n, namely {C1, . . . , Cn}, then

X̂HT = arg min
D∈Cm

d2
E(D,T ),

where T (i, j) =
1

n

∑n
k=1 TCk

(i, j) and dE is the euclidean distance between the matrices, i.e.

d2
E(D,T ) =

m∑
i=1

m∑
j=1

(
TD(i, j)− T (i, j)

)2
.

Now we can get a linear programming problem for this estimator.

Theorem 6. Consider the metric space (Cn, dT ) and the Horvitz-Thompson estimator X̂HT for a

sample of size n, then X̂HT is the solution to the next linear programming problem:

minimize
∑m

i=1

∑m
j=1

(
1− 2T (i, j)

)
TD(i, j)

subject to
m∑
i=1

TD(i, j) = 1, j = 1, ...,m

m∑
j=1

TD(i, j) = 1, i = 1, ...,m

TD(i, j) ≥ 0, i, j = 1, ...,m

Proof. By the last lemma, we have

X̂HT = arg min
D∈Cm

m∑
i=1

m∑
j=1

(
TD(i, j)− T (i, j)

)2
=

= arg min
D∈Cm

m∑
i=1

m∑
j=1

[
T 2
D(i, j) + T

2
(i, j)− 2TD(i, j)T (i, j)

]
.

Since the position matrix is 0/1-valued we get T 2
D(i, j) + T

2
(i, j) − 2TD(i, j)T (i, j) = TD(i, j) +

T
2
(i, j)− 2TD(i, j)T (i, j). Moreover, the second summand is constant for D then

X̂HT = arg min
D∈Cm

m∑
i=1

m∑
j=1

[
TD(i, j)− 2TD(i, j)T (i, j)

]
=
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= arg min
D∈Cm

m∑
i=1

m∑
j=1

(
1− 2T (i, j)

)
TD(i, j).

Now, we are going to state this problem in a mathematical optimization setting. Before that, we
should realize two things. For a matrix TD to be the adjacency matrix of some chain D, we need
that each element is placed at just one position,

∑m
i=1 TD(i, j) = 1 ∀j. Also, we can only have one

element on each position,
∑m

i=j TD(i, j) = 1 ∀i. Then the linear problem associated looks like

minimize
∑m

i=1

∑m
j=1

(
1− 2T (i, j)

)
TD(i, j)

subject to
m∑
i=1

TD(i, j) = 1, j = 1, ...,m

m∑
j=1

TD(i, j) = 1, i = 1, ...,m

TD(i, j) ∈ {0, 1}, i, j = 1, ...,m

Now, we are going to prove that the polytope defined by the constraints

subject to
m∑
i=1

TD(i, j) = 1, j = 1, ...,m

m∑
j=1

TD(i, j) = 1, i = 1, ...,m

TD(i, j) ≥ 0, i, j = 1, ...,m

is an integer polytope. It is enough to show that the matrix associated to the equalities is totally
unimodular. By using the Hoffman-Gale theorem (see appendix A) with sets of rows R1 for the
first set of equalities and R2 for the second set of equalities the result follows. Since the polytope
is integer, the integer problem and the linear problem are equivalent to each other and the theorem
holds.

Note that the last problem is a classic assignement problem. This way working with chains implies
a lower complexity than working with general posets.

Example 8. We continue with the last example. However, in this case we work in the restricted
case of chains. The sample is designed without replacement and having size n = 100. In this case
each person reports about their preference chain, for instance see Figure 10 showing the preference
chains of two persons. Fixing the order (E,N,H, P, U), their position matrices are
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TC =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 TD =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The rest of the sample is simulated by computer.

U

H

P

E

N

U

P

H

N

E

Figure 10: Two preference chains C and D.

It is a good and easy exercise to compute the matricial distance between the last two posets,
dT (C,D) = 8. Now, we are going to compute the Horvitz-Thompson estimator:

X̂HT := arg min
D∈Cm

n∑
k=1

d2
T (Ck, D).

In order to get the value of X̂HT , we should solve the next linear programming problem.

minimize
∑m

i=1

∑m
j=1

(
1− 2T (i, j)

)
TD(i, j)

subject to
m∑
i=1

TD(i, j) = 1, j = 1, ...,m

m∑
j=1

TD(i, j) = 1, i = 1, ...,m

TD(i, j) ≥ 0, i, j = 1, ...,m

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure 11.
Therefore, in this example, the unemployment is also the major concern for citizens.
As in the last example, now the goverment wants to know how to spend the money according to

the preferences of people. We can also give a solution to this by using the center of gravity of the

order polytope associated to X̂HT . Let us call C to the poset X̂HT . The center of gravity cC can be
computed as follows:

cC =
1

m+ 1
H(C),
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U

H

P

N

E

Figure 11: X̂HT obtained by solving the associated LP problem.

Now, using the order (E,N,H, P, U), since there is just one linear extension:

H(P ) = (1, 2, 4, 3, 5).

Finally, cC =
1

6
H(P ) = (1/6, 2/6, 4/6, 3/6, 5/6).

We just divide cC by its sum to get a vector which add up to 1, i.e. cC = (1/15, 2/15, 4/15, 3/15, 5/15).
This vector gives us the percentage that must be invested by the goverment on each issue.

5 Applications to official statistics

In this section we present several possible uses of the last theoretical framework. We explain how
to apply sampling theory on ordered structures to problems in official statistics. The goal of this
section is not to use real data for giving a completely finished methodology, but explaing the main
ideas, while leaving details for future work. Considering issues of confidentiality, we will not use
real data. Instead, we will use computer simulations inspired on the publicly available data. In
order to obtain these data we would need to include a simple and concrete question in the associated
questionnaire asking about the poset of preferences. The examples elaborated in this setion illustrate
several possible applications of order theory to official statistics, however the presented theory can
be applied in many more cases.

5 .1 Election surveys and voting intention

One of the most common uses of statistics is estimating the voting intention by asking people about
their political preferences. The spanish Sociological Research Center (CIS) carries out regular surveys
covering these topics, see [3]. The objective is always to determine the general public opinion about
the different political parties. In many cases, this kind of surveys include questions about the order
of preference among the different political parties. This order is always supposed to be a chain. This
information is very interesting but it can be improved by allowing people to be indifferent between
several political groups. That means allowing people to inform about its political preferences poset.
In this case, the target population could be the population of voting age of a whole country or some
specific region. Let N be the total number of individuals in the target population and n the sample
size. For this example, the sample size will be n = 100. The elements of this sample are denoted by
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P1, P2, . . . , Pn. Once again, since we do not have data with this information we simulate by computer
the preference of each individual. Let us suppose that there are five political parties A,B,C,D and
E. Obviously we will use the distance dM and our goal is to estimate X. As explained in last sections,
the first step is computing the Horvitz-Thompson estimator:

X̂HT := arg min
Q∈Pm

n∑
k=1

d2
M(Pk, Q).

In order to get the value of X̂HT , we can solve the next ILP problem:

minimize
∑5

i=1

∑5
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ..., 5
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ..., 5
MQ(i, j) ∈ {0, 1}, i, j = 1, ..., 5

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure 12

A

D E

B C

Figure 12: X̂HT obtained by solving the associated ILP.

Therefore, in this example, the political parties D and E are the ones preferred by most citizens.
Voting intention for A and B is much lower.

Now, we give a more precise estimation of the voting intention. As it is explained in appendix
A, we can give a solution to this by using the center of gravity of the order polytope associated to

X̂HT . Let P be the poset X̂HT . The center of gravity cP can be computed as follows:

cP =
1

m+ 1
H(P ),

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. Poset P has 7 linear ex-

tensions: (B,A,C,D,E), (B,A,C,E,D), (A,B,C,D,E), (A,B,C,E,D), (A,C,B,D,E), (A,C,B,E,D),
(A,C,E,B,D). Now, using the order (A,B,C,D,E), we sum the vectors having the positions of
each element on each linear extension:

H(P ) =
1

7
[(2, 1, 3, 4, 5) + (2, 1, 3, 5, 4) + (1, 2, 3, 4, 5) + (1, 2, 3, 5, 4)+
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+(1, 3, 2, 4, 5) + (1, 3, 2, 5, 4) + (1, 4, 2, 5, 3)] =
1

7
(9, 16, 18, 32, 30).

Finally, cP =
1

6
H(P ) = (9/42, 16/42, 18/42, 32/42, 30/42).

We just divide cP by its sum to get a vector which add up to 1, i.e.

cP = (9/105, 16/105, 18/105, 32/105, 30/105).

This vector gives us an estimation of the voting intention in respect of each political party.

5 .2 Social Surveys: fertility, habits and opinion

Conducting surveys about habits and opinion is the best way of kwnowing the way of thinking
and doing of a society. There are many public institutions dedicated to design and conduct this
kind of surveys, among which we can find the National Statistics Institute (INE) or the Sociological
Research Center (CIS). We can regularly find questions in these questionnaires asking about ordering
by importance several choices. In these cases, we could improve the accuracy of the answer by
letting people be indifferent to different choices. Once again, posets improve the model. The fertility
survey published by the National Statistics Institute (INE), see [10], is perfect to implement our
new techniques. This survey has a lot of multiple choice questions where a ranking order is needed.
Some examples of these variables are: “Most valued aspects of a job for women”, “Main reasons why
women do not intend to have children” or “Main reasons for the delay in motherhood with respect
to the ideal time”. In this example, we are going to work with the variable “Most valued aspects of a
job for women”. This variable can take 6 possible values: “Good economic conditions” (E), “Long-
term labor stability” (S), “Family reconciliation measures” (F) (teleworking, flexibility in the work
schedule, in the holidays ...), “An interesting job that satisfies me personally and professionally” (I),
“Good work schedule” (SC) and “Good Location” (L). In this case, women are asked about the three
most valued aspects of a job. However, it would be possible to improve the accuracy of the estimation
by asking about a complete ranking order of these six categories. Obtaining this information is as
easy as incorporaring this question in the questionnaire. Let us suppose that we already have these
data. Then, for this example we have allowed people to report about their chain of preferences. This
way the answers are chains in C6. We will use the distance dT . The target population in this case
are the women aged 18 to 55, both ages included, who reside in main family dwellings throughout
the national territory, see [10]. Let N be the total number of individuals in the target population
and n the sample size. In this case, the sample size will be n = 100. The elements of this sample
are denoted by C1, C2, . . . , Cn. In this illustrating example, we simulate by computer the chain of
each individual based on the publicly available information. The objective is to estimate the mean
population chain X. The first step is, as always, computing the Horvitz-Thompson estimator:

X̂HT := arg min
D∈C6

n∑
k=1

d2
T (Ck, D).

In order to get the value of X̂HT , we should solve the next linear programming problem. Note
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that the problem does not involve integer variables and is very easy to solve with any mathematical
software.

minimize
∑m

i=1

∑m
j=1

(
1− 2T (i, j)

)
TD(i, j)

subject to
m∑
i=1

TD(i, j) = 1, j = 1, ...,m

m∑
j=1

TD(i, j) = 1, i = 1, ...,m

TD(i, j) ≥ 0, i, j = 1, ...,m

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure
13.

E

S

I

F

SC

L

Figure 13: X̂HT obtained by solving the associated LP.

Therefore, in this case, the “Good economic conditions” are the most valued aspect of a job in
this chain and the “Good location” would be the least valued.

It is also interesting to obtain a symmetric confidence interval for the population mean chain.

Now by using bootstrap estimation with B = 200, we get B̂(X̂HT ) = 1 and V̂ (X̂HT ) = 1.71. For
α = 0.05, since dT (x, y) ≥ 1, we obtain

P

dT (X̂HT , X) <

√
V̂ (X̂HT ) + B̂(X̂HT )

√
α

 ≥ 1− α⇔ P
(
d(X̂HT , X) < 10.32

)
≥ 0.95.

Then the distance between the estimator X̂HT and the population mean X is lower than 10.32
with a probability of 95%. For instance, we can say that the population mean X is different from

the chain C ′ = (SC,L, I, F, E, S) with a probability of 95%, since dT (X̂HT , C
′) = 12.

Other important surveys about habits and opinion can be studied with this technique. For
instance, analysing the major concerns of citizens are one of the most common opinion surveys, see
[3]. In Examples 7 and 8 we have explained how to use posets to deal with these problems. The
main advantage here is that we benefit from the information of two choices to be equally important.
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Moreover, the resulting posets are an excellent measure of how the society places importance on
different social, ethical and legal issues.

5 .3 User Satisfaction Surveys

Over the last few decades, the National Statistic Institute (INE) has made many efforts both in terms
of management and quality control of its products, with the aim of maintaining the high degree of
confidence from which the official statistical information is currently profiting see [19].

The INE conducts user surveys in order to know their opinion and degree of satisfaction with
statistics, as well as to detect new information needs. For instance, the 2016 User Satisfaction Survey
(USS2016) collected the opinions of 272 qualified users who, on a voluntary basis, had collaborated
in the research by expressing their opinions on quality and confidence in statistics, and by making
suggestions for improving the statistical system, see [20]. Selected users represented the main in-
stitutions of experienced and qualified users in the statistical area: researchers and professors from
university centres, public administration bodies, international experts, the media and other insti-
tutions. One of the questions appearing in this questionnaire is about ordering by importance the
six different dimensions of quality. These dimensions are explained below. The six dimensions of
quality are: “Relevance” (R),“Accuracy” (A), “Timeliness” (T), “Coherence” (C), “Geographical
comparability” (GC) and “Temporal comparability” (TC). Relevance is understood as the degree to
which INE statistics satisfy the needs of users. The accuracy is defined as how well INE statistics
reflect reality. The development of statistical and mathematical methods as well as the progress of
technology improve significantly the statistics accuracy. Timeliness is the lapse of time between the
publication of the information and the period to which it refers. Geographical and temporal com-
parability attempt to measure to what extent the different sources are compatible with each other
[20]. Asking users about ordering the diffent dimensions of quality is a core question which allows to
compute an overall index of user satisfaction with the statistics. Currently, only chains are included
as possible answer to this questions. A way of improving accuracy is to allow users to be indifferent
between some dimensions of quality. This way the answer are posets in P6. Here we make an example
of how one can use posets for this purpose. The target population in this case are the users of a
specific statistical product. Let N be the total number of individuals in the target population and
n the sample size. In this case, the sample size will be n = 100. The elements of this sample are
denoted by P1, P2, . . . , Pn. So far, this kind of data are not collected, but it would be as simple as
including a new question in the questionnaire asking about the preference poset of each person. In
this illustrating example, we simulate by computer the preference of each individual. We will use the
distance dM and our goal is to estimate X. The first step is, as explained previously, computing the
Horvitz-Thompson estimator:

X̂HT := arg min
Q∈Pm

n∑
k=1

d2
M(Pk, Q).

In order to get the value of X̂HT , we can solve the next ILP problem:
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minimize
∑6

i=1

∑6
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ..., 6
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ..., 6
MQ(i, j) ∈ {0, 1}, i, j = 1, ..., 6

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure 14

A R

T

C

TC GC

Figure 14: X̂HT obtained by solving the associated ILP.

Therefore, in this example, both “Relevance” and “Accuracy” are the most important dimensions
for most people. “Coherence” is the next most important dimension. Finally, “Timeliness”, “Ge-
ographical comparability” and “Temporal comparability” are less important to users in accordance
with the simulated data. From the last result, we can give an interesting approximation to a global
satisfaction index. There are different methodological approaches for doing this, see [7]. This index
is just a way of weighing the different dimensions of quality. As it is explained in appendix A, we

can construct this index by using the center of gravity of the order polytope associated to X̂HT . Let

us call P to the poset X̂HT . The center of gravity cP can be computed as follows:

cP =
1

m+ 1
H(P ),

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. Poset P has 16 linear

extensions. Now, using the order (TC,GC,C, T,A,R), we sum the vectors having the positions of
each element on each linear extension and we get:

H(P ) =
1

16
[(30, 40, 52, 30, 88, 88)].

Finally, cP =
1

7
H(P ) = (30/112, 40/112, 52/112, 30/112, 88/112, 88/112).

We just divide cP by its sum to get a vector which add up to 1, i.e.

cP = (30/328, 40/328, 52/328, 30/328, 88/328, 88/328).

This vector gives us coefficients of each dimension in the satisfaction index. That is,

I =
30

328
TC +

40

328
GC +

52

328
C +

30

328
T +

88

328
A+

88

328
R.
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5 .4 Quality of Life Indicators

Quality of life indicators measure the progress and well-being of individuals. This involves broad-
ening the framework of economic development indicators traditionally used as measures of growth
and well-being (GDP, other aggregated National Accounts indicators). The development of these
indicators has been promoted by a large number of initiatives from both the scientific and the aca-
demic world, as well as from European and international organisations (United Nations, OECD,
European Commission, Eurostat). The National Statistics Institute (INE) regularly releases statis-
tics about quality of life, including these kinds of indicators. This publication contains information
about the multidimensional measurement of the quality of life, including a set of indicators grouped
in 9 dimensions and disaggregated by individual characteristics (sex, age, type of household, type of
income, level of education, nationality, level of urbanisation) and geographical scope (Autonomous
Communities, EU), see [25].

The selected indicators describe the quality of life organised in nine dimensions: “Material living
conditions” (I), “Work” (II), “Health” (III), “Education” (IV), “Leisure and social relations” (V),
“Physical and personal security” (VI), “Governance and basic rights” (VII), “Environment” (VIII)
and “Subjective well-being” (IX). The Stiglitz-Sen-Fitoussi report [25] mentions among its recom-
mendations the necessity of considering together the effect of all the quality of life dimensions. We
can use the last methodology to build an index indicator. The idea is asking the experts about the
ranking order of these dimensions allowing them to be indifferent between several dimensions. To
illustrate this, let us look at an example with simulated data.

In this case the answer are posets in P9 and we will use the distance dM . Here we make an
example of how one can use posets for this purpose. The sample in this case would be the opinion
of a committee of experts. For the sake of simplicity, suppose that we have only the opinion of
three experts. That is, the elements of the sample are P1, P2 and P3. For generating these posets we
have taken inspiration from the publicly available data about the major concerns for citizens, see [3].
These three posets are given in the next Figure 15.

Now we compute the Horvitz-Thompson estimator:

X̂HT := arg min
Q∈P9

3∑
k=1

d2
M(Pk, Q).

In order to get the value of X̂HT , we can solve the next ILP problem:

minimize
∑9

i=1

∑9
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ..., 9
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ..., 9
MQ(i, j) ∈ {0, 1}, i, j = 1, ..., 9

Using a mathematical software we get that X̂HT is just the poset displayed in the next Figure
16.

Therefore, in this example, “Work” would be the most relevant dimension followed by “Education”
and “Enviroment”. From the last result, we can construct a global quality of life indicator. There
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Figure 15: P1, P2 and P3.
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Figure 16: X̂HT obtained by solving the associated ILP.

are different methodological approaches for doing this, see [25]. This index is just a way of weighing
the different dimensions of quality. As it is explained in appendix A, we can construct this index by

using the center of gravity of the order polytope associated to X̂HT . Let us call P to the poset X̂HT .
The center of gravity cP can be computed as follows:

cP =
1

m+ 1
H(P ),

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. Poset P has 384 linear
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extensions. Now, using the obvious order (I, II, III, IV, V, V I, V II, V III, IX), we sum the vectors
having the positions of each element on each linear extension and we get:

H(P ) =
1

384
[(1140, 3456, 2448, 2952, 1140, 1140, 1140, 2640, 1224)].

Finally, cP =
1

10
H(P ).

We just divide cP by its sum to get a vector which add up to 1, i.e.

cP =
1

17280
[(1140, 3456, 2448, 2952, 1140, 1140, 1140, 2640, 1224)].

This vector gives us coefficients of each dimension in the satisfaction index. That is,

I =
1140

17280
I+

3456

17280
II+

2448

17280
III+

2952

17280
IV+

1140

17280
V+

1140

17280
V I+

1140

17280
V II+

2640

17280
V III+

1224

17280
IX ≈

≈ 0.06 · I + 0.20 · II + 0.14 · III + 0.17 · IV + 0.06 ·V + 0.06 ·V I + 0.06 ·V II + 0.15 ·V III + 0.07 · IX.

5 .5 Control structures in companies

In a Business Register the enterprise group is one of the fundamental statistical units which are
researched and studied. An enterprise group is usually composed of many companies related to each
other by control relationships. Let us call A and B to two companies of the same group. We say
that A controls B directly if A has more than the 50% of the assets of B. We will denote it by
B � A. Note that there are not two companies A1 and A2 such that B � A1 and B � A2, otherwise
A1 and A2 would have more than the 50% of the assets of B but this would add up to more than
100%. Considering the transitive closure of this binary relation we get a poset. Normally, there
is always a company controlling the rest of the group, this is usually called the head of the group.
Linking these considerations we find that the poset representing the control structure of a group is
always a rooted tree, from a graph theoretic point of view. That is, this poset is connected, with one
maximum and without cycles, see Figure 17. We call this poset the tree structure of a group. Two
important problems arise from here. Firstly, the control structure of a group can change between
two consecutive years. In some cases, these changes are so profound that led us to rethink if the
current group should be considered as a completely new group with a new identifier. We can use
our distance dM to fix some threshold K and consider two groups G1, G2 ∈ Pm with different control
structure separated groups if dM(G1, G2) > K.

Secondly, we usually collect data from different sources and each source give us a different tree
structure for a specific group. From now on, consider an example with a group with 9 companies,
see again Figure 17.

In this example, we can see how the head A remains the same, however some remarkable changes
have ocurred. In a more general setting we will have as many tree groups as different sources. Working
with metric spaces we can define an intermediate version of tree group searching for the tree which
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Figure 17: Three tree structures for the same group.

minimizes the distances to the given groups. Suppose that we have only the three tree structures
given in Figure 17, then we can compute, for the metric space (P9, dM), the Horvitz-Thompson
estimator:

X̂HT = arg min
Q∈P9

9∑
i=1

9∑
j=1

(
MQ(i, j)−M(i, j)

)2
.

The last minimum is reached in the next poset, see Figure 18 left. Indeed, bMe is the adjacency
matrix of some poset, see Corollary 3, so it is not necessary to solve the last ILP problem.

I HGFED

CB

A

I HGFED

CB

A

Figure 18: X̂HT poset (left) and tree solution X̂HTT for the problem (right).

This poset is not a tree since it has a cycle A − B − I − C. To obtain a tree solution we can

just break the relation I ≺ C or I ≺ B in X̂HT , see Figure 18 right. Let us call X̂HTT to this tree.
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Both of these choices are tree structures with minimum objective function. In general, if we restrict
ourselves to work with trees, we can modify the ILP problem associated to the Horvitz-Thompson
estimator in order to get always trees. We should add the constraint

∑m
j=1MQ(i, j) ≤ 1 for each i.

This constraint breaks all the possible cycles in the resulting poset. Then the associated ILP is:

minimize
∑m

i=1

∑m
j=1

(
1− 2M(i, j)

)
MQ(i, j)

subject to MQ(i, j) +MQ(j, i) ≤ 1, i, j = 1, ...,m
MQ(i, j) +MQ(j, k) ≤ 1 +MQ(i, k), i, j, k = 1, ...,m
m∑
j=1

MQ(i, j) ≤ 1, i = 1, ...,m

MQ(i, j) ∈ {0, 1}, i, j = 1, ...,m

Now by using bootstrap estimation with n = 3, B = 200, we get B̂(X̂HT ) = 1.73 and V̂ (X̂HT ) =
4.07. For α = 0.05, since dM(x, y) ≥ 1, we obtain for trees

P

dM(X̂HTT , X) <

√
V̂ (X̂HTT ) + B̂(X̂HTT )

√
α

 ≥ 1− α⇔ P
(
d(X̂HTT , X) < 16.75

)
≥ 0.95.

Then the distance between the estimator X̂HTT and the population mean, seen as a tree, X is

lower than 16.75 with a probability of 95%. Furthermore, X̂HTT or any of the three initial trees
structures are likely to be the population mean.

6 Conclusions and open problems

This work deals with the problem of using statistical sampling on spaces where no algebraic operations
are defined in advance. We have seen that most of the usual statistical properties hold for metric
spaces. Moreover, we are able to use statistical inference techniques on these sets. In addition, we
have studied the specific case of variables with partially ordered values. We have analysed different
ways of defining metrics over posets. Of course, other new distances could be defined and analysed.
We have also studied the complexities to compute estimators associated to these distances. We
have seen plenty of examples illustrating different applications of this theory to official statistics. Of
course, many others interesting and useful applications could be studied. In the future, it would be
interesting to use the ideas of this paper in a specific area of official statistics. This way we could
study in depth the advantages and disadvantages of this theory for a specific example and develop
a full methodology using the presented theory. For this, we would need in some cases a concrete
question in the questionnaire asking about the poset of preferences.

From a mathematical point of view, there are many interesting open problems that could be
studied further. About the sampling theory on metric spaces, it would be interesting to discover
general conditions for the Horvitz-Thompson estimator to be unbiased on metric spaces. In the
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same way, replicating some of these results for the general case with different probabilities is a very
interesting task. Also, developing other bias and variance estimation techniques in metric spaces
would be engaging. About the distances between posets, finding a way of making operative the
internal distance between posets remains as an open problem. This distance perfectly captures the
idea of poset distance at the expense of a higher complexity. From a geometrical point of view,
computing all the vertices of PLm polytope is an open problem with a lot of interesting applications
in order theory.
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A Polyhedra and polytopes

In this appendix, we summarize the fundamentals of polyhedral combinatorics. For a more detailed
treatment see [26, 15]. A halfspace in Rm is a set of the form {x ∈ Rm : αT · x ≤ c} for
some vector α ∈ Rm and c ∈ R. A polyhedron is the intersection of finitely many halfspaces:
P = {x ∈ Rm : A · x ≤ b}. A polytope is a bounded polyhedron. We can define a polytope in
another way. The convex hull of a finite set of points S, denoted by Conv(S), is the set of all convex
combinations of its points, i.e.

Conv(S) =


|S|∑
i=1

αixi | αi ≥ 0 ∧
|S|∑
i=1

αi = 1

 .

A polytope can always be written as the convex hull of a finite set of points. These points are
called the vertices of the polytope. Remember that a face of a polytope P is defined as a subset
F ⊆ P such that there exists a vector α and a constant c ∈ R such that

αT · x ≤ c, ∀x ∈ P and F = P ∩ {αT · x = c}.

We will denote the face defined via α and c by Fα,c. Equivalently, a face F is also characterized
by the vertices of P in F . Obviously, the face of a polytope is a polytope. Recall that the dimension
of a polytope P is defined as the dimension of the smallest affine subspace containing its vertices,
denoted aff(P) (for more details, see [26]). One should consult [26, 15], for pictures of polyhedra and
polytopes. Figure 19 shows the picture of a polytope whose faces are all pentagons. This polytope
is called a dodecahedron. The dodecahedron has 12 faces, 30 edges and 20 vertices.

We say that a polytope P = {x ∈ Rm : A · x ≤ b} is integer if it has integer vertices. Integer
vertices are closely related to totally unimodular matrices. A matrix A is totally unimodular if
every square submatrix has determinant 0,+1, or −1. In particular, this implies that all entries are
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Figure 19: Example of a polytope (a dodecahedron).

0 or ±1. Totally unimodular matrices are very well behaved, because they always define polytopes
with integer vertices, as long as the right-hand side is integer-valued.

Theorem 7. If A is totally unimodular and b is an integer vector, then P = {x ∈ Rm : A · x ≤ b}
has integer vertices.

Proposition 10. Let A be a totally unimodular matrix. Multiplying any row or column of A by −1
results in a totally unimodular matrix.

Proposition 11. Let A be a totally unimodular matrix. Then the following matrices are all totally
unimodular:

−A, AT , [A, I], [A,−A].

Proposition 12. Let A be a totally unimodular matrix. Then the following polyhedrons are all
integral for any vectors b and u of integers:

{x ∈ Rm : A · x ≤ b}

{x ∈ Rm : A · x ≥ b}

{x ∈ Rm : A · x ≤ b, x ≥ 0}

{x ∈ Rm : A · x = b, x ≥ 0}

{x ∈ Rm : A · x = b, 0 ≤ x ≤ u}

Finally, we state some key theorems about totally unimodular matrices [2].

46



Theorem 8. Ghouila-Houri’s Characterization. An m × n integral matrix A is totally uni-
modular if and only if for each set R ⊆ {1, 2, · · · ,m} can be divided into two disjoint sets R1 and R2

such that ∑
i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1}, j = 1, 2, · · · , n.

Applying the Ghouila-Houri’s Characterization to AT we get the same results for columns.

Corollary 4. An m × n integral matrix A is totally unimodular if and only if for each set C ⊆
{1, 2, · · · , n} can be divided into two disjoint sets C1 and C2 such that∑

j∈C1

aij −
∑
j∈C2

aij ∈ {−1, 0, 1}, i = 1, 2, · · · ,m.

Theorem 9. Hoffman-Gale sufficient conditions.
An (0,+1,−1) integral matrix A is totally unimodular if both of the following conditions are satisfied:

• Each column contains at most two nonzero elements.

• The rows of A can be patitioned into two sets R1 and R2 such that two nonzero entries in a
column are in the same set of rows if they have different signs and in different sets of rows if
they have the same sign.

There is a special kind of polytope that is very useful for our purposes [24]. Given a poset P with
m elements, it is possible to associate to P a polytope O(P ) over Rm, called the order polytope
of P , formed by the m-uples f of real numbers indexed by the elements of P satisfying

• 0 ≤ f(a) ≤ 1 for every a in P,

• f(a) ≤ f(b) whenever a � b in P .

Our interest in order polytopes comes from the fact that there are known results characterizing
the vertices and many other properties of the polytopeO(P ) in terms of the structure of the subjacent
poset P. So we can learn interesting things about P from O(P ) and vice versa. It can be seen [24]
that the vertices of O(P ) are the characteristic functions of filters of P . Similarly, it can be seen [5]
that two vertices of an order polytope whose associated filters are F1 and F2 are adjacent vertices if
and only if the symmetric difference F1∆F2 := (F1 \ F2) ] (F2 \ F1) is a connected subposet of P .
Figure 20 shows an example of order polytope.

The volume of an order polytope O(P ) depends on the number of linear extension of P in the next

way: V ol(O(P )) =
e(P )

m!
, where |P | = m. The center of gravity cP of this polytope has appealing

applications. It can be computed as follows:

cP =
1

m+ 1
H(P ),
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Figure 20: A poset (left) and its associated order polytope (right).

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. In other words, hε(a) is

the height of a in the linear extension ε [21]. The next example explains how to compute the center
of gravity of an order polytope and some applications.

Example 9. Consider the labeled poset V of Figure 21 with three elements. O(V ) is a square
pyramid. To compute cV we first should compute hε(a) for each linear extension ε. Poset V has just
2 linear extensions ε1 = (1, 2, 3) and ε2 = (1, 3, 2). Then, the position of element 1 in each extension
is hε1(1) = 1 and hε2(1) = 1. The rest of values are hε1(2) = 2, hε1(3) = 3, hε2(2) = 3 and hε2(3) = 2.
Therefore,

H(V ) =
1

2
[(1, 2, 3) + (1, 3, 2)] =

1

2
(2, 5, 5).

Finally, cV =
1

4
H(V ) = (2/8, 5/8, 5/8).

32

1

Figure 21: Labeled poset V.

Now imagine that we want to share a total quantity of resources among the elements of a poset
according to the set of preferences given by the poset, for that we can use cV . To put it in concrete
terms, suppose that a trader is investing money in three financial products 1, 2 and 3. The trader
prefers 2 and 3 to 1 and is indifferent between 2 and 3 as poset V models. He wants to know how
much money should be invested in each product according to these preferences. Then the point cV
tells us an excellent way of sharing the total amount of money. We just divide cV by its sum to get
a vector which add up to 1, i.e. cV = (2/12, 5/12, 5/12). This point is the center of gravity of the
preferences seen as an order polytope. Finally, the trader should invest 2/12 of the money in 1, and
5/12 in 2 and 3.
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B Linear and integer programming

Operations Research is the discipline that uses a scientific approach to decision making. It seeks
to determine how best to design and operate a system, usually under conditions requiring the allo-
cation of scarce resources, by means of quantitative methods. Some example within mathematical
optimization are production planning, inventory control, packing problems, and assignment prob-
lems. To solve this kind of problems we should first give a mathematical model of the situation. In
order to do this, the decisions are identified and decision variables are defined. For each decision it
is defined a decision variable of suitable type (continuous, integer valued, binary) according to the
particular needs. The next step is formulating the objective function to compute the benefit/cost in
terms of decision variables and parameters. Finally, the constraints indicating the interplay between
the different variables must be expressed in mathematical terms. When the objective function and
the constraints are linear, the problem is called a linear programming problem (LP problem). Linear
programs are problems that can be expressed in canonical form as

maximize cTx

subject to Ax ≤ b
x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors of (known)
coefficients, A is a (known) matrix of coefficients.

Theorem 10. (Fundamental Theorem of Linear Programming.)
Given a linear programming problem:

maximize cTx
subject to x ∈ P = {x ∈ Rm : A · x ≤ b}.

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to the problem, then:

• x∗ is an extreme point (vertex) of P, or

• x∗ lies on a face F ⊂ P of optimal solutions.

The simplex method or (simplex algorithm) was the first algorithm to solve linear program-
ming problems and was proposed in 1947 by George Dantzig. This algorithm proceeds by iterating
through feasible solutions that are vertices of the polyhedron that represents the feasibility region.
Finally, it will use an optimality condition to terminate. A few exceptions may occur, they determine
initial infeasibility, unboundedness, more than one solution and cycling in case of degenerancies. The
simplex method is remarkably efficient in practice and was a great improvement over earlier methods
such as Fourier-Motzkin elimination.

However, in 1972, Klee and Minty gave an example, the Klee-Minty cube, showing that the
worst-case complexity of simplex method as formulated by Dantzig is exponential time. The simplex
algorithm has polynomial-time average-case complexity under various probability distributions, with
the precise average-case performance of the simplex algorithm depending on the choice of a probability
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Figure 22: Simplex search in a generic polytope.

distribution for the random matrices. In Figure 22 we can see an example of searching process in a
generic polytope.

An integer programming problem is a mathematical optimization problem in which some or
all of the variables are restricted to be integers. In many settings the term refers to integer linear
programming (ILP), in which the objective function and the constraints (other than the integer
constraints) are linear. Integer programming is NP-complete. For this reason, it is preferable to
work with linear programing problems than ILP problems.

References

[1] L. Bohdan. Distances between partially ordered sets. Mathematica Bohemica, 2:167–170, 1991.

[2] P. Camion. Characterization of Totally Unimodular Matrices. Proceedings of the American
Mathematical Society, 16:1068–1073, 1965.
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